Skip to main content

Advertisement

Log in

Sex determination in cremated human remains using the lateral angle of the pars petrosa ossis temporalis: is old age a limiting factor?

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

The significant role of the petrous bone in sex assessment of skeletal human remains has been highlighted by several studies. In previous work we applied the method of the measurement of the lateral angle of the petrous bone to a sample of cremated human remains of known age and sex from an Italian crematorium; the low accuracy of sex classification obtained was probably due to the high number of elderly individuals in our sample. In this paper we investigate the relationship between age and alterations of the petrous bone, by applying the same methodology we used previously, measuring the lateral angle of the petrous bone, in a new sample group that was subdivided into three different age groups. Results showed a moderate rate of accuracy in sex assessment for the first two age groups, for which a new sex-discriminating sectioning point was found; however, the method was found not to be applicable for individuals over 70 years of age. Measurement of the lateral angle in adults aged between 20 and 70 years is a reliable method for sex assessment of cremated remains in conjunction with classical methods, in both archaeological and forensic contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schmidt CW, Symes SA, editors. The analysis of burned human remains. 2nd ed. London: Academic Press; 2015.

    Google Scholar 

  2. Fairgrieve SI. Forensic cremation. Recovery and analysis. Boca Raton: CRC Press; 2008.

    Google Scholar 

  3. Waterhouse K. Post-burning fragmentation of calcined bone: implications for remains recovery from fatal fire scenes. J Forensic Legal Med. 2013;20:1112–7.

    Article  Google Scholar 

  4. Gapert R, Rieder K. Non-invasive examination of a skull fragment recovered from a world war two aircraft crash site. Forensic Sci Med Pathol. 2013;9:395–402.

    Article  PubMed  Google Scholar 

  5. Tsokos M. Heat-induced post-mortem defect of the skull simulating an exit gunshot wound of the calvarium. Forensic Sci Med Pathol. 2011;7:227–8.

    Article  PubMed  Google Scholar 

  6. Byard RW. The autopsy evaluation of “straightforward” fire deaths. Forensic Sci Med Pathol. 2018;14:273–5.

    Article  PubMed  Google Scholar 

  7. Ubelaker DH. The forensic evaluation of burned skeletal remains: a synthesis. Forensic Sci Int. 2009;183:1–5.

    Article  PubMed  Google Scholar 

  8. Berketa JW, Simpson E, Graves S, O’Donohue G, Liu YL. The utilization of incinerated hip and knee prostheses for identification. Forensic Sci Med Pathol. 2015;11:432–7.

    Article  PubMed  Google Scholar 

  9. Berketa JW. Maximizing postmortem oral-facial data to assist identification following severe incineration. Forensic Sci Med Pathol. 2014;10:208–16.

    Article  PubMed  Google Scholar 

  10. Bennett JL. Thermal alteration of buried bone. J Archaeol Sci. 1999;26:1–8.

    Article  Google Scholar 

  11. Etok SE, Valsami-Jones E, Wess TJ, Hiller JC, Maxwell CA, Rogers KD, et al. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807–16.

    Article  CAS  Google Scholar 

  12. Thompson TJU. Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci Int. 2004;146:203–25.

    Article  Google Scholar 

  13. Masotti S. Valutazione degli aspetti tafonomici nei resti ossei umani combusti. Ann dell’Università di Ferrara - Museol Sci e Nat. 2014;10:359–64.

    Google Scholar 

  14. Shipman P, Foster G, Schoeninger M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci. 1984;11:307–25.

    Article  Google Scholar 

  15. Gonçalves D, Thompson TJU, Cunha E. Implications of heat-induced changes in bone on the interpretation of funerary behaviour and practice. J Archaeol Sci. 2011;38:1308–13.

    Article  Google Scholar 

  16. Buikstra JE, Ubelaker DH, editors. Standards for data collection from human skeletal remains. Fayetteville: Arkansas Archaeological Survey Research Series; 1994.

    Google Scholar 

  17. Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP. Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol. 1985;68:15–28.

    Article  CAS  PubMed  Google Scholar 

  18. Krogman WM, Iscan MY. Human skeleton in forensic medicine. Springfield: Charles C Thomas; 1986.

    Google Scholar 

  19. Ferembach D, Schwydeski I, Stloukal M. Recommendations for age and sex diagnoses of skeletons. J Hum Evol. 1980;9:517–49.

    Article  Google Scholar 

  20. Gualdi-Russo E. Sex determination from the talus and calcaneus measurements. Forensic Sci Int. 2007;171:151–6.

    Article  PubMed  Google Scholar 

  21. Acsádi G, Nemeskéri J. History of human life span and mortality. Budapest: Akadémiai Kiadó; 1970.

    Google Scholar 

  22. Brooks S, Suchey JM. Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum Evol. 1990;5:227–38.

    Article  Google Scholar 

  23. Thompson T. The assessment of sex in cremated individuals: some cautionary notes. J Can Soc Forensic Sci. 2002;35:49–56.

    Article  Google Scholar 

  24. Gonçalves D. The reliability of osteometric techniques for the sex determination of burned human skeletal remains. HOMO- J Comp Hum Biol. 2011;62:351–8.

    Article  Google Scholar 

  25. Gonçalves D, Thompson TJU, Cunha E. Osteometric sex determination of burned human skeletal remains. J Forensic Legal Med. 2013;20:906–11.

    Article  Google Scholar 

  26. Norén A, Lynnerup N, Czarnetzki A, Graw M. Lateral angle: a method for sexing using the petrous bone. Am J Phys Anthropol. 2005;128:318–23.

    Article  PubMed  Google Scholar 

  27. Graw M, Wahl J, Ahlbrecht M. Course of the meatus acusticus internus as criterion for sex differentiation. Forensic Sci Int. 2005;147:113–7.

    Article  CAS  PubMed  Google Scholar 

  28. Wahl J, Graw M. Metric sex differentiation of the pars petrosa ossis temporalis. Int J Legal Med. 2001;114:215–23.

    Article  CAS  PubMed  Google Scholar 

  29. Gonçalves D, Thompson TJU, Cunha E. Sexual dimorphism of the lateral angle of the internal auditory canal and its potential for sex estimation of burned human skeletal remains. Int J Legal Med. 2015;129:1183–6.

    Article  PubMed  Google Scholar 

  30. Masotti S, Succi-Leonelli E, Gualdi-Russo E. Cremated human remains: is measurement of the lateral angle of the meatus acusticus internus a reliable method of sex determination? Int J Legal Med. 2013;127:1039–44.

    Article  PubMed  Google Scholar 

  31. Midori AA, Ricanek K, Patterson E. A review of the literature on the aging adult skull and face: implications for forensic science research and applications. Forensic Sci Int. 2007;172:1–9.

    Article  Google Scholar 

  32. Akgül AA, Toygar TU. Natural craniofacial changes in the third decade of life: a longitudinal study. Am J Orthod Dentofac Orthop. 2002;122:512–22.

    Article  Google Scholar 

  33. Mydlová M, Dupej J, Koudelová J, Velemínská J. Sexual dimorphism of facial appearance in ageing human adults: a cross-sectional study. Forensic Sci Int. 2015;257:519.e1–9.

    Article  Google Scholar 

  34. Ashley-Montagu MF. Aging of the skull. Am J Phys Anthropol. 1938;23:355–75.

    Article  Google Scholar 

  35. Avelar LET, Cardoso MA, Bordoni LS, De Miranda Avelar L, De Miranda Avelar JV. Aging and sexual differences of the human skull. Plast Reconstr Surg - Glob Open. 2017;5:1–6.

    Google Scholar 

  36. Susanne C. Individual age changes of the morphological characteristics. J Hum Evol. 1977;6:181–9.

    Article  Google Scholar 

  37. Susanne C. Ageing, continuous changes of adulthood. In: Johnston FE, Roche AF, Susanne C, editors. Human physical growth and maturation. Boston: Springer; 1980. p. 203–18.

    Chapter  Google Scholar 

  38. Gualdi-Russo E. Longitudinal study of anthropometric changes with aging in an urban Italian population. HOMO. 1998;49:241–59.

    Google Scholar 

  39. Orimo H, Ito H, Suzuki T, Araki A, Hosoi T, Sawabe M. Reviewing the definition of “elderly”. Geriatr Gerontol Int. 2006;6:149–58.

    Article  Google Scholar 

  40. Chang AY, Skirbekk VF, Tyrovolas S, Kassebaum NJ, Dieleman JL. Measuring population ageing: an analysis of the global burden of disease study 2017. Lancet Public Heal. 2019;4:e159–67.

    Article  Google Scholar 

  41. Sjögren M, Vanderstichele H, Ågren H, Zachrisson O, Edsbagge M, Wikkelsø C, et al. Tau and Aβ42 in cerebrospinal fluid from healthy adults 21–93 years of age: establishment of reference values. Clin Chem. 2001;47:177681.

    Google Scholar 

  42. Tsai A, Malek-Ahmadi M, Kahlon V, Sabbagh MN. Differences in cerebrospinal fluid biomarkers between clinically diagnosed idiopathic normal pressure hydrocephalus and Alzheimer’s disease. J Alzheimer’s Dis Park. 2014;4:1000150. https://doi.org/10.4172/2161-0460.1000150.

  43. Chen JW, Zhou CF, Lin ZX. The influence of different classification standards of age groups on prognosis in high-grade hemispheric glioma patients. J Neurol Sci. 2015;356:148–52.

    Article  PubMed  Google Scholar 

  44. DiGangi E, Moore MK, editors. Research methods in human skeletal biology. Waltham: Academic Press; 2013.

    Google Scholar 

  45. Kalmey JK, Rathbun TA. Sex determination by discriminant function analysis of the petrous portion of the temporal bone. J Forensic Sci. 1996;41:865–7.

    Article  CAS  PubMed  Google Scholar 

  46. Schutkowski H. Über den diagnostischen wert der pars petrosa ossis temporalis für die geschlechtsbestimmung. zeitschrift für morphol und anthropol. E. Schweizerbart’sche Verlagsbuchhandlung. 1983;74:129–44.

    CAS  Google Scholar 

  47. Kozerska M, Skrzat J, Szczepanek A. Application of the temporal bone for sex determination from the skeletal remains. Folia Med Cracov. 2015;55:33–9.

    PubMed  Google Scholar 

  48. Lynnerup N, Schulz M, Madelung A, Graw M. Diameter of the human internal acoustic meatus and sex determination. Int J Osteoarchaeol. 2006;16:118–23.

    Article  Google Scholar 

  49. Wahl J, Henke W. Die pars petrosa als diagnostikum für die multivariat-biometrische geschlechtsbestimmung von leichenbrandmaterial. Z Morphol Anthropol E Schweizerbart’sche Verlagsbuchhandlung. 1980;70:258–68.

    CAS  Google Scholar 

  50. Thompson TJU. Heat-induced dimensional changes in bone and their consequences for forensic anthropology. J Forensic Sci. 2005;50:1008–15.

    Article  CAS  PubMed  Google Scholar 

  51. Urban JE, Weaver AA, Lillie EM, Maldjian JA, Whitlow CT, Stitzel JD. Evaluation of morphological changes in the adult skull with age and sex. J Anat England. 2016;229:838–46.

    Article  Google Scholar 

  52. Lillie EM, Urban JE, Lynch SK, Weaver AA, Stitzel JD. Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. J Bone Miner Res. 2016;31:299–307.

    Article  PubMed  Google Scholar 

  53. Shipman P, Walker A, Bichell D. The human skeleton. Cambridge: Harvard University Press; 1985.

    Book  Google Scholar 

  54. Gulya AJ. Anatomy of the temporal bone with surgical implications. 3rd ed. New York: Informa Healthcare USA Inc; 2007.

    Book  Google Scholar 

  55. Wahl J. Ein Beitrag zur metrischen Geschlechtsdiagnose verbrannter und unverbrannter menschlicher Knochenreste-ausgearbeitet an der Pars petrosa ossis temporalis. Zeitschrift für Rechtsmedizin. 1981;86:79–101.

    Article  CAS  Google Scholar 

  56. Wolf M, Streit B, Dokládal M, Schultz M. Determining human age at death using cremated bone microstructure. Biomed J Sci Tech Res. 2017;1:785–91.

    Google Scholar 

  57. Piers MD, Brickley M, editors. Updated guidelines to the standards for recording human remains. Earley: Chartered Institute for Archaeologists; 2017.

    Google Scholar 

  58. Wendell Todd N, Graw M, Dietzel M. “Lateral angle” of the internal auditory canal: non-association with temporal bone pneumatization. J Forensic Sci. 2010;55:141–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Pasini.

Ethics declarations

Ethical approval

Not required.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masotti, S., Pasini, A. & Gualdi-Russo, E. Sex determination in cremated human remains using the lateral angle of the pars petrosa ossis temporalis: is old age a limiting factor?. Forensic Sci Med Pathol 15, 392–398 (2019). https://doi.org/10.1007/s12024-019-00131-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-019-00131-4

Keywords

Navigation