Skip to main content
Log in

Structural and chemical changes of thermally treated bone apatite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal behaviour of the animal by-product meat and bone meal (MBM) has been investigated in order to assess how it is affected structurally and chemically by incineration. Initially composed of intergrown collagen and hydroxyapatite (HAP), combustion of the organic component is complete by 650 °C, with most mass loss (50–55%) occurring by 500 °C. No original proteins were detected in samples heated at 400 °C or above. Combustion of collagen is accompanied by an increase in HAP mean crystallite size at temperatures greater than 400 °C, from 10 nm to a constant value of 120 nm at 800 °C or more. Newly formed crystalline phases appear beyond 400 °C, and include β-tricalcium phosphate, NaCaPO4, halite (NaCl) and sylvite (KCl). Crystallite thickness as judged by small angle X-ray scattering (SAXS) increases from 2 nm (25–400 °C) to 8–9 nm very rapidly at 550 °C, and then gradually increases to approximately 10 nm. The original texture of HAP within a collagen matrix is progressively lost, producing a porous HAP dominated solid at 700 °C, and a very low porosity sintered HAP product at 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Conditions for the production of MBM and tallow. In: (1999/534/EC) Council decision of 19 July 1999

  2. Laying down health rules concerning animal by-products not intended for human consumption. In: Regulation (EC) No 1774/2002 of the European Parliament and of the Council (LS73/1). 2002

  3. Laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. In: Regulation (EC) No 999/2001 of the European Parliament and of the Council (L147/1). 1999

  4. Cyr M, Ludmann C (2006) Cement Concrete Res 36(3):459

    Article  CAS  Google Scholar 

  5. Deydier E, Guilet R, Sarda S, Sharrock P (2005) J Hazard Mater B121:141

    Article  CAS  Google Scholar 

  6. Deydier E, Guilet R, Sharrock P (2003) J Hazard Mater B101:55

    Article  CAS  Google Scholar 

  7. Valsami-Jones E, Ragnarsdottir KV, Putnis A, Bosbach D, Kemp AJ (1998) Chem Geol 151(1–4):215

    Article  CAS  Google Scholar 

  8. Knox AS, Kaplan DI, Paller MH (2006) Sci Total Environ 357(1–3):271

    CAS  Google Scholar 

  9. Rogers KD, Daniels P (2002) Biomaterials 23:2577

    Article  CAS  Google Scholar 

  10. Haberko K, Bucko M, Brzezinska-Miecznik J, Haberko M, Mozgawa W, Panz T, Pyda A, Zarebski J (2006) Euro Ceram Soc 26:532

    Google Scholar 

  11. Rogers KD, Etok SE, Scott R (2004) J Mater Sci 39:5747

    Article  CAS  Google Scholar 

  12. Etok SE, Rogers KD, Scott R (2005) J Mater Sci 40(21):5627

    Article  CAS  Google Scholar 

  13. Fernandez E, Gil F, Ginebra MP, Driessens FC, Planell JA (1999) J Mater Sci: Mater Med 10:169

    Article  CAS  Google Scholar 

  14. Guizzardi S, Montanari C, Migliaccio S, Strocchi R, Solmi R, Martini D, Ruggeru A (2000) J Biomed Mater Res 53:227

    Article  CAS  Google Scholar 

  15. Catanese J, Featherstone J, Keaveny T (1999) J Biomed Mater Res 45:327

    Article  CAS  Google Scholar 

  16. Kubisz L, Mielcarek S (2005) J Non-Cryst Solids 351:2935

    Article  CAS  Google Scholar 

  17. Ramachandran G (1988) Int J Peptide Res 31(1):1

    Article  CAS  Google Scholar 

  18. Hiller JC, Thompson TJU, Evison MP, Chamberlain AT, Wess TJ (2003) Biomaterials 24:5091

    Article  CAS  Google Scholar 

  19. Wess TJ, Alberts I, Hiller J, Chamberlain AT, Drakopoulos M, Collins M (2002) Calcif Tissue Int 70(2):103

    Article  CAS  Google Scholar 

  20. Thompson TJU (2004) Forensic Sci Int 146S:S203

    Article  Google Scholar 

  21. Zizak I, Roschger P, Paris O, Misof BM, Berzalanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) J Struct Biol 141:208

    Article  CAS  Google Scholar 

  22. Koon HEC, Nicholson RA, Collins MJ (2003) J Archaeol Sci 30:1393

    Article  Google Scholar 

  23. Roberts SJ, Smith CI, Millard A, Collins MJ (2002) Archaeometry 44(3):485

    Article  CAS  Google Scholar 

  24. Holmes KM, Robson-Brown KA, Oates WP, Collins MJ (2005) J Archaeol Sci 32(2):157

    Article  Google Scholar 

  25. Coelho R (ed) (2003) Users manual: topas academic. Bruker-AXS, Karlsruhe

    Google Scholar 

  26. Danilchenko SN, Moseke C, Sukhodub LF, Sulkio-Cleff B (2004) Crystal Res Technol 1:71

    Article  CAS  Google Scholar 

  27. Fratzl P, Groschner M, Vogl G, Plenk H, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) J Bone Miner Res 7(3):329

    Article  CAS  Google Scholar 

  28. Fratzl P, Screiber S, Klaushofer K (1996) Connect Tissue Res 34(4):247

    CAS  Google Scholar 

  29. Kaufman DS, Manley WF (1998) Quatern Sci Rev (Quaternary Geochronology) 17:987

    Article  Google Scholar 

  30. Hill RL (1965) Adv Protein Chem 20:37

    Article  CAS  Google Scholar 

  31. Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) Biochimica et Biophysica Acta 1527(1–2):11

    CAS  Google Scholar 

  32. Etok SE (2005) Structural characterisation and in vitro behaviour of apatite coatings and powders. In: PhD thesis, Department of Materials & Medical Sciences, Cranfield University, Shrivenham, UK

  33. Gibson IR, Bonfield W (2002) J Biomed Mater Res 59(4):697

    Article  CAS  Google Scholar 

  34. Sampath Kumar TS, Manjubala I, Gunasekaran J (2000) Biomaterials 21(16):1623

    Article  Google Scholar 

  35. Lozano LF, Pena-Rico MA, Heredia A, Octolan-Flores J, Gomez-Cortes A, Velazquez R, Belio IA, Bucio L (2003) J Mater Sci 38:4777

    Article  CAS  Google Scholar 

  36. Holden JL, Phakey PP, Clement JG (1995) Forensic Sci Int 74:29

    Article  CAS  Google Scholar 

  37. Raspanti M, Guizzardi S, DePasquale V, Martini D, Ruggeri A (1994) Biomaterials 15:433

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by NERC (Grant no: NERD/S/2003/00678) and the PDM Group. The authors wish to thank Martin Gill and Gordon Cressey for their invaluable assistance with XRD analysis and interpretation respectively. In addition thanks go to Mr. Gary Jones for his assistance with FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Valsami-Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etok, S.E., Valsami-Jones, E., Wess, T.J. et al. Structural and chemical changes of thermally treated bone apatite. J Mater Sci 42, 9807–9816 (2007). https://doi.org/10.1007/s10853-007-1993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1993-z

Keywords

Navigation