Skip to main content

Advertisement

Log in

Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Overweight and obesity are important risk factors for diabetes, cardiovascular diseases, and premature death in modern society. Recently, numerous natural and synthetic compounds have been tested in diet-induced obese animal models, to counteract obesity. Melatonin is a circadian hormone, produced by pineal gland and extra-pineal sources, involved in processes which have in common a rhythmic expression. In teleost, it can control energy balance by activating or inhibiting appetite-related peptides. The study aims at testing effects of melatonin administration to control-fed and overfed zebrafish, in terms of expression levels of orexigenic (Ghrelin, orexin, NPY) and anorexigenic (leptin, POMC) genes expression and morphometry of visceral and subcutaneous fat depots.

Methods

Adult male zebrafish (n = 56) were divided into four dietary groups: control, overfed, control + melatonin, overfed + melatonin. The treatment lasted 5 weeks and BMI levels of every fish were measured each week. After this period fishes were sacrificed; morphological and morphometric studies have been carried out on histological sections of adipose tissue and adipocytes. Moreover, whole zebrafish brain and intestine were used for qRT-PCR.

Results

Our results demonstrate that melatonin supplementation may have an effect in mobilizing fat stores, in increasing basal metabolism and thus in preventing further excess fat accumulation. Melatonin stimulates the anorexigenic and inhibit the orexigenic signals.

Conclusions

It seems that adequate melatonin treatment exerts anti-obesity protective effects, also in a diet-induced obesity zebrafish model, that might be the result of the restoration of many factors: the final endpoint reached is weight loss and stabilization of weight gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.W. Haslam, W.P. James, Obesity. Lancet 366(9492), 1197–1209 (2005). https://doi.org/10.1016/S0140-6736(05)67483-1

    Article  PubMed  Google Scholar 

  2. M. Cecchini, F. Sassi, Tackling obesity requires efficient government policies. Isr. J. Health Policy Res. 1(1), 18 (2012). https://doi.org/10.1186/2045-4015-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  3. T. Magrone, E. Jirillo, Childhood obesity: immune response and nutritional approaches. Front. Immunol. 6, 76 (2015). https://doi.org/10.3389/fimmu.2015.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N.M. Iyengar, C.A. Hudis, A.J. Dannenberg, Obesity and inflammation: new insights into breast cancer development and progression. Am. Soc. Clin. Oncol. Educ. Book (2013). https://doi.org/10.1200/EdBook_AM.2013.33.46

    Article  Google Scholar 

  5. J.R. Speakman, Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum. Hered. 75(2-4), 57–79 (2013). https://doi.org/10.1159/000353585

    Article  CAS  PubMed  Google Scholar 

  6. B. de Luxán-Delgado, B. Caballero, Y. Potes, A. Rubio-González, I. Rodríguez, J. Gutiérrez-Rodríguez, J.J. Solano, A. Coto-Montes, Melatonin administration decreases adipogenesis in the liver of ob/ob mice through autophagy modulation. J. Pineal Res. 56(2), 126–133 (2014). https://doi.org/10.1111/jpi.12104

    Article  CAS  PubMed  Google Scholar 

  7. R.J. Reiter, D.X. Tan, L. Fuentes-Broto, Melatonin: a multitasking molecule. Prog. Brain. Res. 181, 127–151 (2010). https://doi.org/10.1016/S0079-6123(08)81008-4

    Article  CAS  PubMed  Google Scholar 

  8. J. Cipolla-Neto, F.G. Amaral, S.C. Afeche, D.X. Tan, R.J. Reiter, Melatonin, energy metabolism, and obesity: a review. J. Pineal Res. 56(4), 371–381 (2014). https://doi.org/10.1111/jpi.12137

    Article  CAS  PubMed  Google Scholar 

  9. D. Zephy, J. Ahmad, Type 2 diabetes mellitus: role of melatonin and oxidative stress. Diabetes Metab. Syndr. 9(2), 127–131 (2015). https://doi.org/10.1016/j.dsx.2014.09.018

    Article  PubMed  Google Scholar 

  10. D. Gnocchi, G. Bruscalup, Circadian rhythms and hormonal homeostasis: pathophysiological implications. Biology 6(1) (2017). https://doi.org/10.3390/biology6010010.

    Article  Google Scholar 

  11. S.R. Pandi-Perumal, V. Srinivasan, G.J. Maestroni, D.P. Cardinali, B. Poeggeler, R. Hardeland, Melatonin: Nature’s most versatile biological signal? Febs. J. 273(13), 2813–2838 (2006). https://doi.org/10.1111/j.1742-4658.2006.05322.x

    Article  CAS  PubMed  Google Scholar 

  12. R.J. Reiter, D.X. Tan, A. Korkmaz, S. Ma, Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann. Med. 44(6), 564–577 (2012). https://doi.org/10.3109/07853890.2011.586365

    Article  CAS  PubMed  Google Scholar 

  13. M.B. Arnao, J. Hernandez-Ruiz, Functions of melatonin in plants: a review. J. Pineal Res. 59(2), 133–150 (2015). https://doi.org/10.1111/jpi.12253

    Article  CAS  PubMed  Google Scholar 

  14. G.A. Bubenik, Gastrointestinal melatonin: localization, function, and clinical relevance. Dig. Dis. Sci. 47(10), 2336–2348 (2002)

    Article  CAS  Google Scholar 

  15. O. Lepage, E.T. Larson, I. Mayer, S. Winberg, Tryptophan affects both gastrointestinal melatonin production and interrenal activity in stressed and nonstressed rainbow trout. J. Pineal Res. 38(4), 264–271 (2005). https://doi.org/10.1111/j.1600-079X.2004.00201.x

    Article  CAS  PubMed  Google Scholar 

  16. C.C. Piccinetti, B. Migliarini, I. Olivotto, M.P. Simoniello, E. Giorgini, O. Carnevali, Melatonin and peripheral circuitries: insights on appetite and metabolism in Danio rerio. Zebrafish 10(3), 275–282 (2013). https://doi.org/10.1089/zeb.2012.0844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M.L. Pinillos, N. De Pedro, A.L. Alonso-Gomez, M. Alonso-Bedate, M.J. Delgado, Food intake inhibition by melatonin in goldfish (Carassius auratus). Physiol. Behav. 72(5), 629–634 (2001)

    Article  CAS  Google Scholar 

  18. J. Falcon, L. Besseau, S. Sauzet, G. Boeuf, Melatonin effects on the hypothalamo-pituitary axis in fish. Trends Endocrinol. Metab. 18(2), 81–88 (2007). https://doi.org/10.1016/j.tem.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  19. N. De Pedro, R.M. Martinez-Alvarez, M.J. Delgado, Melatonin reduces body weight in goldfish (Carassius auratus): effects on metabolic resources and some feeding regulators. J. Pineal Res. 45(1), 32–39 (2008). https://doi.org/10.1111/j.1600-079X.2007.00553.x

    Article  CAS  PubMed  Google Scholar 

  20. C.C. Piccinetti, B. Migliarini, I. Olivotto, G. Coletti, A. Amici, O. Carnevali, Appetite regulation: the central role of melatonin in Danio rerio. Horm. Behav. 58(5), 780–785 (2010). https://doi.org/10.1016/j.yhbeh.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  21. D.X. Tan, L.C. Manchester, L. Fuentes-Broto, S.D. Paredes, R.J. Reiter, Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes. Rev. 12(3), 167–188 (2011). https://doi.org/10.1111/j.1467-789X.2010.00756.x

    Article  CAS  PubMed  Google Scholar 

  22. P.J. Lardone, S.N. Alvarez-Sanchez, J.M. Guerrero, A. Carrillo-Vico, Melatonin and glucose metabolism: clinical relevance. Curr. Pharm. Des. 20(30), 4841–4853 (2014)

    Article  CAS  Google Scholar 

  23. R. Hardeland, D.P. Cardinali, V. Srinivasan, D.W. Spence, G.M. Brown, S.R. Pandi-Perumal, Melatonin--a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93(3), 350–384 (2011). https://doi.org/10.1016/j.pneurobio.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  24. I. Vinogradova, V. Anisimov, Melatonin prevents the development of the metabolic syndrome in male rats exposed to different light/dark regimens. Biogerontology 14(4), 401–409 (2013). https://doi.org/10.1007/s10522-013-9437-4

    Article  CAS  PubMed  Google Scholar 

  25. J.P. Chaput, Sleep patterns, diet quality and energy balance. Physiol. Behav. 134, 86–91 (2014). https://doi.org/10.1016/j.physbeh.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  26. A.W. McHill, A.J. Phillips, C.A. Czeisler, L. Keating, K. Yee, L.K. Barger, M. Garaulet, F.A. Scheer, E.B. Klerman, Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 106(5), 1213–1219 (2017). https://doi.org/10.3945/ajcn.117.161588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Seth, D.L. Stemple, I. Barroso, The emerging use of zebrafish to model metabolic disease. Dis. Models & Mech. 6(5), 1080–1088 (2013). https://doi.org/10.1242/dmm.011346

    Article  CAS  Google Scholar 

  28. T. Oka, Y. Nishimura, L. Zang, M. Hirano, Y. Shimada, Z. Wang, N. Umemoto, J. Kuroyanagi, N. Nishimura, T. Tanaka, Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010). https://doi.org/10.1186/1472-6793-10-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. G. Montalbano, M. Mania, M.C. Guerrera, F. Abbate, R. Laurà, M. Navarra, J.A. Vega, E. Ciriaco, A. Germanà, Morphological differences in adipose tissue and changes in BDNF/Trkb expression in brain and gut of a diet induced obese zebrafish model. Ann. Anat. 204, 36–44 (2015). https://doi.org/10.1016/j.aanat.2015.11.003

    Article  PubMed  Google Scholar 

  30. S.K. McMenamin, J.E. Minchin, T.N. Gordon, J.F. Rawls, D.M. Parichy, Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini. Endocrinology 154(4), 1476–1487 (2013). https://doi.org/10.1210/en.2012-1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J.E.N. Minchin, J.F. Rawls, A classification system for zebrafish adipose tissues. Dis. Model Mech. 10(6), 797–809 (2017). https://doi.org/10.1242/dmm.025759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M.B. Levanti, M.C. Guerrera, M.G. Calavia, E. Ciriaco, G. Montalbano, J. Cobo, A. Germana, J.A. Vega, Acid-sensing ion channel 2 (ASIC2) in the intestine of adult zebrafish. Neurosci. Lett. 494(1), 24–28 (2011). https://doi.org/10.1016/j.neulet.2011.02.046

    Article  CAS  PubMed  Google Scholar 

  33. F. Abbate, M.C. Guerrera, G. Montalbano, M.B. Levanti, G.P. Germanà, M. Navarra, R. Laurà, J.A. Vega, E. Ciriaco, A. Germanà, Expression and anatomical distribution of TrkB in the encephalon of the adult zebrafish (Danio rerio). Neurosci. Lett. 563, 66–69 (2014). https://doi.org/10.1016/j.neulet.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  34. M.L. Bonet, P. Oliver, A. Palou, Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta 1831(5), 969–985 (2013). https://doi.org/10.1016/j.bbalip.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  35. H. Zhu, Q. Jin, Y. Li, Q. Ma, J. Wang, D. Li, H. Zhou, Y. Chen, Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperon-. 23(1), 101–113 (2018). https://doi.org/10.1007/s12192-017-0827-4

    Article  CAS  Google Scholar 

  36. S. Roman, A. Agil, M. Peran, E. Alvaro-Galue, F.J. Ruiz-Ojeda, G. Fernandez-Vazquez, J.A. Marchal, Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Transl. Res. 165(4), 464–479 (2015). https://doi.org/10.1016/j.trsl.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  37. G. Favero, A. Stacchiotti, S. Castrezzati, F. Bonomini, M. Albanese, R. Rezzani, L.F. Rodella, Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutr. Res. 35(10), 891–900 (2015). https://doi.org/10.1016/j.nutres.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  38. R.J. Reiter, Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12(2), 151–180 (1991). https://doi.org/10.1210/edrv-12-2-151

    Article  CAS  PubMed  Google Scholar 

  39. H. Gurer-Orhan, S. Suzen, Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr. Med. Chem. 22(4), 490–499 (2015)

    Article  CAS  Google Scholar 

  40. M. Gallagher, W.D. Brown, Composition of San Francisco bay brine shrimp (Artemia salina). J. Agric. Food Chem. 23(4), 630–632 (1975). https://doi.org/10.1021/jf60200a008

    Article  CAS  PubMed  Google Scholar 

  41. R.Y. Xu, Y.P. Wan, Q.Y. Tang, J. Wu, W. Cai, The effects of high fat on central appetite genes in Wistar rats: a microarray analysis. Clin. Chim. Acta 397(1-2), 96–100 (2008). https://doi.org/10.1016/j.cca.2008.07.027

    Article  CAS  PubMed  Google Scholar 

  42. V. Srinivasan, Y. Ohta, J. Espino, J.A. Pariente, A.B. Rodriguez, M. Mohamed, R. Zakaria, Metabolic syndrome, its pathophysiology and the role of melatonin. Recent Pat. Endocr. Metab. Immun. Drug Discov. 7(1), 11–25 (2013)

    Article  CAS  Google Scholar 

  43. N. De Pedro, R.M. Martínez-Alvarez, M.J. Delgado, Melatonin reduces body weight in goldfish (Carassius auratus): effects on metabolic resources and some feeding regulators. J. Pineal Res. 45(1), 32–39 (2008). https://doi.org/10.1111/j.1600-079X.2007.00553.x

    Article  CAS  PubMed  Google Scholar 

  44. B. Perry, Y. Wang, Appetite regulation and weight control: the role of gut hormones. Nutr. Diabetes 2, e26 (2012). https://doi.org/10.1038/nutd.2011.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Prunet-Marcassus, M. Desbazeille, A. Bros, K. Louche, P. Delagrange, P. Renard, L. Casteilla, L. Penicaud, Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology 144(12), 5347–5352 (2003). https://doi.org/10.1210/en.2003-0693

    Article  CAS  PubMed  Google Scholar 

  46. F. Nduhirabandi, E.F. du Toit, A. Lochner, Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol. 205(2), 209–223 (2012). https://doi.org/10.1111/j.1748-1716.2012.02410.x

    Article  CAS  Google Scholar 

  47. E. Lima-Cabello, M.E. Diaz-Casado, J.A. Guerrero, B.B. Otalora, G. Escames, L.C. Lopez, R.J. Reiter, D. Acuna-Castroviejo, A review of the melatonin functions in zebrafish physiology. J. Pineal Res. 57(1), 1–9 (2014). https://doi.org/10.1111/jpi.12149

    Article  CAS  PubMed  Google Scholar 

  48. F. Nduhirabandi, B. Huisamen, H. Strijdom, D. Blackhurst, A. Lochner, Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J. Pineal Res. 57(3), 317–332 (2014). https://doi.org/10.1111/jpi.12171

    Article  CAS  PubMed  Google Scholar 

  49. K. Szewczyk-Golec, P. Rajewski, M. Gackowski, C. Mila-Kierzenkowska, R. Wesołowski, P. Sutkowy, M. Pawłowska, A. Woźniak, Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxid. Med. Cell Longev. 2017, 8494107 (2017). https://doi.org/10.1155/2017/8494107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. C.C. Piccinetti, L.A. Ricci, N. Tokle, G. Radaelli, F. Pascoli, L. Cossignani, F. Palermo, G. Mosconi, V. Nozzi, F. Raccanello, I. Olivotto, Malnutrition may affect common sole (Solea solea L.) growth, pigmentation and stress response: molecular, biochemical and histological implications. Comparative biochemistry and physiology. Part A Mol. Integr. Physiol. 161(4), 361–371 (2012). https://doi.org/10.1016/j.cbpa.2011.12.009

    Article  CAS  Google Scholar 

  51. F. García-García, E. Juárez-Aguilar, J. Santiago-García, D.P. Cardinali, Ghrelin and its interactions with growth hormone, leptin and orexins: implications for the sleep-wake cycle and metabolism. Sleep. Med. Rev. 18(1), 89–97 (2014). https://doi.org/10.1016/j.smrv.2013.04.003

    Article  PubMed  Google Scholar 

  52. H. Mangge, K. Summers, G. Almer, R. Prassl, D. Weghuber, W. Schnedl, D. Fuchs, Antioxidant food supplements and obesity-related inflammation. Curr. Med. Chem. 20(18), 2330–2337 (2013)

    Article  CAS  Google Scholar 

  53. C.E. Perez-Leighton, C.J. Billington, C.M. Kotz, Orexin modulation of adipose tissue. Biochim. Biophys. Acta 1842(3), 440–445 (2014). https://doi.org/10.1016/j.bbadis.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  54. C. Kotz, J. Nixon, T. Butterick, C. Perez-Leighton, J. Teske, C. Billington, Brain orexin promotes obesity resistance. Ann. N. Y. Acad. Sci. 1264, 72–86 (2012). https://doi.org/10.1111/j.1749-6632.2012.06585.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C.M. Novak, C.M. Kotz, J.A. Levine, Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am. J. Physiol. Endocrinol. Metab. 290(2), E396–403 (2006). https://doi.org/10.1152/ajpendo.00293.2005

    Article  CAS  PubMed  Google Scholar 

  56. R.D. Cone, The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol. Metab. 10(6), 211–216 (1999)

    Article  CAS  Google Scholar 

  57. J.M. Cerda-Reverter, M.J. Agulleiro, R.G. R, E. Sanchez, R. Ceinos, J. Rotllant, Fish melanocortin system. Eur. J. Pharmacol. 660(1), 53–60 (2011). https://doi.org/10.1016/j.ejphar.2010.10.108

    Article  CAS  PubMed  Google Scholar 

  58. I. Gantz, T.M. Fong, The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 284(3), E468–474 (2003). https://doi.org/10.1152/ajpendo.00434.2002

    Article  CAS  PubMed  Google Scholar 

  59. E. Valassi, M. Scacchi, F. Cavagnini, Neuroendocrine control of food intake. Nutr., Metab., Cardiovasc. Dis. 18(2), 158–168 (2008). https://doi.org/10.1016/j.numecd.2007.06.004

    Article  CAS  Google Scholar 

  60. A. Agil, M. El-Hammadi, A. Jimenez-Aranda, M. Tassi, W. Abdo, G. Fernandez-Vazquez, R.J. Reiter, Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. J. Pineal Res. 59(1), 70–79 (2015). https://doi.org/10.1111/jpi.12241

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

Conceived and designed the experiments: M.G., M.M., G.A. Performed the experiment: M.G., M.M., G.M.C. Collection and assembly of data: M.G., M.M., G.A. Data analysis and interpretation: M.G., M.M., G.A., G.M.C., L.M., V.J.A., A.F., N.M., L.R. Manuscript writing: M.G., M.M. Final approval of manuscript: all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Montalbano.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Montalbano G. and Mania M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalbano, G., Mania, M., Abbate, F. et al. Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish. Endocrine 62, 381–393 (2018). https://doi.org/10.1007/s12020-018-1653-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1653-x

Keywords

Navigation