Skip to main content

Advertisement

Log in

The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Einhorn, L. H., & Donohue, J. (1977). Cis-diamminedichloroplatinum, vinblastine, and bleomycin combination chemotherapy in disseminated testicular cancer. Annals of Internal Medicine, 87, 293–298.

    Article  CAS  PubMed  Google Scholar 

  2. Nichols, C. R., Catalano, P. J., Crawford, E. D., Vogelzang, N. J., Einhorn, L. H., & Loehrer, P. J. (1998). Randomized comparison of cisplatin and etoposide and either bleomycin or ifosfamide in treatment of advanced disseminated germ cell tumors: an Eastern Cooperative Oncology Group, Southwest Oncology Group, and Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 16, 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  3. Diehl, V., Franklin, J., Hasenclever, D., et al. (1998). BEACOPP, a new dose-escalated and accelerated regimen, is at least as effective as COPP/ABVD in patients with advanced-stage Hodgkin's lymphoma: interim report from a trial of the German Hodgkin's Lymphoma Study Group. Journal of Clinical Oncology, 16, 3810–3821.

    Article  CAS  PubMed  Google Scholar 

  4. Kuderer, N. M., Dale, D. C., Crawford, J., Cosler, L. E., & Lyman, G. H. (2006). Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer, 106, 2258–2266.

    Article  PubMed  Google Scholar 

  5. Wood, W. C., Budman, D. R., Korzun, A. H., et al. (1994). Dose and dose intensity of adjuvant chemotherapy for stage II, node-positive breast carcinoma. The New England Journal of Medicine, 330, 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  6. Antman, K. S., Griffin, J. D., Elias, A., et al. (1988). Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. New England Journal of Medicine, 319, 593–598.

    Article  CAS  Google Scholar 

  7. Lipshultz, S. E., Rifai, N., Dalton, V. M., et al. (2004). The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. The New England Journal of Medicine, 351, 145–153.

    Article  CAS  PubMed  Google Scholar 

  8. Shepherd, J. D., Pringle, L., Barnett, M., Klingemann, H., Reece, D., & Phillips, G. (1991). Mesna versus hyperhydration for the prevention of cyclophosphamide-induced hemorrhagic cystitis in bone marrow transplantation. Journal of Clinical Oncology, 9, 2016–2020.

    Article  CAS  PubMed  Google Scholar 

  9. Friedenstein, A., Chailakhjan, R., & Lalykina, K. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferation, 3, 393–403.

    Article  CAS  Google Scholar 

  10. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2, 83–92.

    CAS  PubMed  Google Scholar 

  11. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.

    Article  CAS  PubMed  Google Scholar 

  12. Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bieback, K., Kern, S., Kluter, H., & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 22, 625–634.

    Article  PubMed  Google Scholar 

  14. I’nt Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22, 1338–1345.

    Article  Google Scholar 

  15. Toma, J. G., Akhavan, M., Fernandes, K. J., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778.

    Article  CAS  PubMed  Google Scholar 

  16. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J. W., Fang, X., Krasnodembskaya, A., Howard, J. P., & Matthay, M. A. (2011). Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem cells, 29, 913–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hocking, A. M., & Gibran, N. S. (2010). Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair. Experimental Cell Research, 316, 2213–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, F., Chiu, S. M., Motan, D. A. L., et al. (2016). Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death &Amp Disease, 7, e2062.

    Article  CAS  Google Scholar 

  20. Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–1586.

    Article  CAS  PubMed  Google Scholar 

  21. Lalu, M. M., McIntyre, L., Pugliese, C., et al. (2012). Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One, 7, e47559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruhle, A., Huber, P. E., Saffrich, R., Lopez Perez, R., & Nicolay, N. H. (2018). The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. International Journal of Cancer.

  23. Nicolay, N. H., Liang, Y., Lopez Perez, R., et al. (2015). Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget, 6, 2076–2087.

    PubMed  Google Scholar 

  24. Nicolay, N. H., Sommer, E., Lopez, R., et al. (2013). Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation. International Journal of Radiation Oncology, Biology, Physics, 87, 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  25. Ruhle, A., Xia, O., Perez, R. L., et al. (2018). The Radiation Resistance of Human Multipotent Mesenchymal Stromal Cells Is Independent of Their Tissue of Origin. International Journal of Radiation Oncology, Biology, Physics.

  26. Nicolay, N. H., Lopez Perez, R., Debus, J., & Huber, P. E. (2015). Mesenchymal stem cells - A new hope for radiotherapy-induced tissue damage? Cancer Letters, 366, 133–140.

    Article  CAS  PubMed  Google Scholar 

  27. Nicolay, N. H., Lopez Perez, R., Rühle, A., et al. (2016). Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Scientific Reports, 6, 20035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicolay, N. H., Rühle, A., Perez, R. L., et al. (2016). Mesenchymal stem cells are sensitive to bleomycin treatment. Scientific Reports, 6, 26645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicolay, N. H., Rühle, A., Perez, R. L., et al. (2016). Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer Letters, 374, 75–84.

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira, M. S., Carvalho, J. L., Campos, A. C., Gomes, D. A., de Goes, A. M., & Melo, M. M. (2014). Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicology Letters, 224, 380–386.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, F., Chen, H., Liu, Y., et al. (2013). Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway. Cellular Physiology and Biochemistry, 32, 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  32. Mueller, L. P., Luetzkendorf, J., Mueller, T., Reichelt, K., Simon, H., & Schmoll, H. J. (2006). Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: evidence of resistance to apoptosis induction. Stem Cells, 24, 2753–2765.

    Article  CAS  PubMed  Google Scholar 

  33. Oliver, L., Hue, E., Rossignol, J., et al. (2011). Distinct Roles of Bcl-2 and Bcl-Xl in the Apoptosis of Human Bone Marrow Mesenchymal Stem Cells during Differentiation. PLOS ONE, 6, e19820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crawford, J., Dale, D. C., & Lyman, G. H. (2004). Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer, 100, 228–237.

    Article  PubMed  Google Scholar 

  35. Koç, O. N., Gerson, S. L., Cooper, B. W., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18, 307.

    Article  PubMed  Google Scholar 

  36. Bernardo, M. E., Ball, L. M., Cometa, A. M., et al. (2011). Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant, 46, 200–207.

    Article  CAS  PubMed  Google Scholar 

  37. Carrancio, S., Blanco, B., Romo, C., et al. (2011). Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment. PLoS One, 6, e26241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yin, T., & Li, L. (2006). The stem cell niches in bone. The Journal of Clinical Investigation, 116, 1195–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sahni, V., Choudhury, D., & Ahmed, Z. (2009). Chemotherapy-associated renal dysfunction. Nature Reviews Nephrology, 5, 450.

    Article  CAS  PubMed  Google Scholar 

  40. Florea, A.-M., & Büsselberg, D. (2011). Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 3, 1351–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartmann, J. T., & Lipp, H.-P. (2003). Toxicity of platinum compounds. Expert Opinion on Pharmacotherapy, 4, 889–901.

    Article  CAS  PubMed  Google Scholar 

  42. Magnasco, A., Corselli, M., Bertelli, R., et al. (2008). Mesenchymal stem cells protective effect in adriamycin model of nephropathy. Cell Transplant, 17, 1157–1167.

    Article  PubMed  Google Scholar 

  43. Morigi, M., Imberti, B., Zoja, C., et al. (2004). Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol, 15, 1794–1804.

    Article  PubMed  Google Scholar 

  44. Park, J. H., Jang, H. R., Kim, D. H., et al. (2017). Early, but not late, treatment with human umbilical cord blood-derived mesenchymal stem cells attenuates cisplatin nephrotoxicity through immunomodulation. American Journal of Physiology. Renal Physiology, 313, F984–FF96.

    Article  PubMed  Google Scholar 

  45. Sherif, I. O., Al-Mutabagani, L. A., Alnakhli, A. M., Sobh, M. A., & Mohammed, H. E. (2015). Renoprotective effects of angiotensin receptor blocker and stem cells in acute kidney injury: Involvement of inflammatory and apoptotic markers. Experimental Biology and Medicine (Maywood), 240, 1572–1579.

    Article  CAS  Google Scholar 

  46. Zoja, C., Garcia, P. B., Rota, C., et al. (2012). Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology. Renal Physiology, 303, F1370–F1381.

    Article  CAS  PubMed  Google Scholar 

  47. Huang, K., Kang, X., Wang, X., et al. (2015). Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Molecular Medicine Reports, 11, 1685–1692.

    Article  CAS  PubMed  Google Scholar 

  48. Kumamoto, M., Nishiwaki, T., Matsuo, N., Kimura, H., & Matsushima, K. (2009). Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury. The European Respiratory Journal, 34, 740–748.

    Article  CAS  PubMed  Google Scholar 

  49. Lee, S. H., Jang, A. S., Kim, Y. E., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respiratory Research, 11, 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Min, F., Gao, F., Li, Q., & Liu, Z. (2015). Therapeutic effect of human umbilical cord mesenchymal stem cells modified by angiotensin-converting enzyme 2 gene on bleomycin-induced lung fibrosis injury. Molecular Medicine Reports, 11, 2387–2396.

    Article  CAS  PubMed  Google Scholar 

  51. Moodley, Y., Vaghjiani, V., Chan, J., et al. (2013). Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS One, 8, e69299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moodley, Y., Atienza, D., Manuelpillai, U., et al. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. The American Journal of Pathology, 175, 303–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ortiz, L. A., Gambelli, F., McBride, C., et al. (2003). Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences, 100, 8407–8411.

    Article  CAS  Google Scholar 

  54. Reddy, M., Fonseca, L., Gowda, S., Chougule, B., Hari, A., & Totey, S. (2016). Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: Comparison with pirfenidone. International Journal of Stem Cells, 9, 192–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, J., Li, L., Xiong, J., Zheng, Y., Ye, Q., & Li, Y. (2015). Cyclophosphamide Combined with Bone Marrow Mesenchymal Stromal Cells Protects against Bleomycin-induced Lung Fibrosis in Mice. Annals of Clinical and Laboratory Science, 45, 292–300.

    CAS  PubMed  Google Scholar 

  56. Abd Allah, S. H., Hussein, S., Hasan, M. M., Deraz, R. H. A., Hussein, W. F., & Sabik, L. M. E. (2017). Functional and Structural Assessment of the Effect of Human Umbilical Cord Blood Mesenchymal Stem Cells in Doxorubicin-Induced Cardiotoxicity. Journal of Cellular Biochemistry, 118, 3119–3129.

    Article  CAS  PubMed  Google Scholar 

  57. Di, G. H., Jiang, S., Li, F. Q., et al. (2012). Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 14, 412–422.

    Article  CAS  PubMed  Google Scholar 

  58. Mousa, H. S. E., Abdel Aal, S. M., & Abbas, N. A. T. (2018). Umbilical cord blood-mesenchymal stem cells and carvedilol reduce doxorubicin- induced cardiotoxicity: Possible role of insulin-like growth factor-1. Biomedicine & Pharmacotherapy, 105, 1192–1204.

    Article  CAS  Google Scholar 

  59. Oliveira, M. S., Melo, M. B., Carvalho, J. L., et al. (2013). Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J Cancer Sci Ther, 5, 52–57.

    Article  CAS  PubMed  Google Scholar 

  60. Pınarlı, F. A., Turan, N. N., Güçlü Pınarlı, F., et al. (2013). Resveratrol and Adipose-derived Mesenchymal Stem Cells Are Effective in the Prevention and Treatment of Doxorubicin Cardiotoxicity in Rats. Pediatric Hematology and Oncology, 30, 226–238.

    Article  CAS  PubMed  Google Scholar 

  61. Psaltis, P. J., Carbone, A., Nelson, A. J., et al. (2010). Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. JACC Cardiovascular Interventions, 3, 974–983.

    Article  PubMed  Google Scholar 

  62. Yu, Q., Li, Q., Na, R., et al. (2014). Impact of repeated intravenous bone marrow mesenchymal stem cells infusion on myocardial collagen network remodeling in a rat model of doxorubicin-induced dilated cardiomyopathy. Molecular and Cellular Biochemistry, 387, 279–285.

    Article  CAS  PubMed  Google Scholar 

  63. Abd-Allah, S. H., Shalaby, S. M., Pasha, H. F., et al. (2013). Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy, 15, 64–75.

    Article  CAS  PubMed  Google Scholar 

  64. Badawy, A., Sobh, M. A., Ahdy, M., & Abdelhafez, M. S. (2017). Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. International Journal of Women's Health, 9, 441–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, X., Wang, Q., Li, X., Wang, Q., Xie, J., & Fu, X. (2018). Heat shock pretreatment of mesenchymal stem cells for inhibiting the apoptosis of ovarian granulosa cells enhanced the repair effect on chemotherapy-induced premature ovarian failure. Stem Cell Research & Therapy, 9, 240.

    Article  CAS  Google Scholar 

  66. Fu, X., He, Y., Xie, C., & Liu, W. (2008). Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy, 10, 353–363.

    Article  CAS  PubMed  Google Scholar 

  67. Gabr, H., Rateb, M. A., El Sissy, M. H., Ahmed Seddiek, H., & Ali Abdelhameed Gouda, S. (2016). The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats. Microscopy Research and Technique, 79, 938–947.

    Article  CAS  PubMed  Google Scholar 

  68. Kilic, S., Pinarli, F., Ozogul, C., Tasdemir, N., Naz Sarac, G., & Delibasi, T. (2014). Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol, 30, 135–140.

    Article  CAS  PubMed  Google Scholar 

  69. Lai, D., Wang, F., Yao, X., Zhang, Q., Wu, X., & Xiang, C. (2015). Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. Journal of Translational Medicine, 13, 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, H. J., Selesniemi, K., Niikura, Y., et al. (2007). Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. Journal of Clinical Oncology, 25, 3198–3204.

    Article  CAS  PubMed  Google Scholar 

  71. Li, J., Yu, Q., Huang, H., et al. (2018). Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Research & Therapy, 9, 81.

    Article  CAS  Google Scholar 

  72. Liu, J., Zhang, H., Zhang, Y., et al. (2014). Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Molecular Cell, 37, 865–872.

    Article  CAS  Google Scholar 

  73. Mohamed, S. A., Shalaby, S. M., Abdelaziz, M., et al. (2018). Human Mesenchymal Stem Cells Partially Reverse Infertility in Chemotherapy-Induced Ovarian Failure. Reproductive Sciences, 25, 51–63.

    Article  CAS  PubMed  Google Scholar 

  74. Song, D., Zhong, Y., Qian, C., et al. (2016). Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. BioMed Research International, 2016, 2517514.

    PubMed  PubMed Central  Google Scholar 

  75. Sun, M., Wang, S., Li, Y., et al. (2013). Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Research & Therapy, 4, 80.

    Article  CAS  Google Scholar 

  76. Takehara, Y., Yabuuchi, A., Ezoe, K., et al. (2012). The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Laboratory Investigation, 93, 181.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Z., Wang, Y., Yang, T., Li, J., & Yang, X. (2017). Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Research & Therapy, 8, 11.

    Article  CAS  Google Scholar 

  78. Cakici, C., Buyrukcu, B., Duruksu, G., et al. (2013). Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. BioMed Research International, 2013, 529589.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lassalle, B., Mouthon, M. A., Riou, L., et al. (2008). Bone marrow-derived stem cells do not reconstitute spermatogenesis in vivo. Stem Cells, 26, 1385–1386.

    Article  PubMed  Google Scholar 

  80. Lue, Y., Erkkila, K., Liu, P. Y., et al. (2007). Fate of Bone Marrow Stem Cells Transplanted into the Testis: Potential Implication for Men with Testicular Failure. The American Journal of Pathology, 170, 899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Monsefi, M., Fereydouni, B., Rohani, L., & Talaei, T. (2013). Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med, 11, 537–544.

    PubMed  PubMed Central  Google Scholar 

  82. Sherif, I. O., Sabry, D., Abdel-Aziz, A., & Sarhan, O. M. (2018). The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Research & Therapy, 9, 196.

    Article  CAS  Google Scholar 

  83. Zhang, D., Liu, X., Peng, J., et al. (2014). Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. International Journal of Molecular Sciences, 15, 13151–13165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou, Y., Xu, H., Xu, W., et al. (2013). Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research & Therapy, 4, 34.

    Article  CAS  Google Scholar 

  85. Bruno, S., Grange, C., Collino, F., et al. (2012). Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One, 7, e33115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, B., Jia, H., Zhang, B., et al. (2017). Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Research & Therapy, 8, 75.

    Article  CAS  Google Scholar 

  87. Théry, C., Witwer, K. W., Aikawa, E., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gronhoj, C., Jensen, D. H., Vester-Glowinski, P., et al. (2018). Safety and Efficacy of Mesenchymal Stem Cells for Radiation-Induced Xerostomia: A Randomized, Placebo-Controlled Phase 1/2 Trial (MESRIX). International Journal of Radiation Oncology, Biology, Physics, 101, 581–592.

    Article  PubMed  Google Scholar 

  89. Bolli, R., Hare, J. M., Henry, T. D., et al. (2018). Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. American Heart Journal, 201, 54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Emadi, A., Jones, R. J., & Brodsky, R. A. (2009). Cyclophosphamide and cancer: golden anniversary. Nature Reviews. Clinical Oncology, 6, 638–647.

    Article  CAS  PubMed  Google Scholar 

  91. Cox, P. J. (1979). Cyclophosphamide cystitis--identification of acrolein as the causative agent. Biochem Pharmacol, 28, 2045–2049.

    Article  CAS  PubMed  Google Scholar 

  92. Payne, H., Adamson, A., Bahl, A., et al. (2013). Chemical- and radiation-induced haemorrhagic cystitis: current treatments and challenges. BJU International, 112, 885–897.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Atkinson, K., Biggs, J. C., Golovsky, D., et al. (1991). Bladder irrigation does not prevent haemorrhagic cystitis in bone marrow transplant recipients. Bone Marrow Transplant, 7, 351–354.

    CAS  PubMed  Google Scholar 

  94. Murphy, C., Harden, E., Stevens, D., Lynch, J., Montes, V., & Herzig, R. (1994). The addition of mesna to hyperhydration does not decrease the incidence of hemorrhagic cystitis in patients receiving high-dose cyclophosphamide. Oncology Reports, 1, 265–266.

    CAS  PubMed  Google Scholar 

  95. Chapel, A., Francois, S., Douay, L., Benderitter, M., & Voswinkel, J. (2013). New insights for pelvic radiation disease treatment: Multipotent stromal cell is a promise mainstay treatment for the restoration of abdominopelvic severe chronic damages induced by radiotherapy. World Journal of Stem Cells, 5, 106–111.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y., Chen, F., Gu, B., Chen, G., Chang, H., & Wu, D. (2015). Mesenchymal stromal cells as an adjuvant treatment for severe late-onset hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation. Acta Haematologica, 133, 72–77.

    Article  CAS  PubMed  Google Scholar 

  97. Ringdén, O., Uzunel, M., Sundberg, B., et al. (2007). Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia, 21, 2271.

    Article  PubMed  Google Scholar 

  98. Ringden, O., & Le Blanc, K. (2011). Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages. Best Practice & Research Clinical Haematology, 24, 65–72.

    Article  CAS  Google Scholar 

  99. Anumanthan, G., Makari, J. H., Honea, L., et al. (2008). Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. The Journal of Urology, 180, 1778–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Meadors, M., Floyd, J., & Perry, M. C. (2006). Pulmonary Toxicity of Chemotherapy. Seminars in Oncology, 33, 98–105.

    Article  CAS  PubMed  Google Scholar 

  101. Abid, S. H., Malhotra, V., & Perry, M. C. (2001). Radiation-induced and chemotherapy-induced pulmonary injury. Current Opinion in Oncology, 13, 242–248.

    Article  CAS  PubMed  Google Scholar 

  102. Santoro, A., & Bonadonna, G. (1979). Prolonged disease-free survival in MOPP-resistant Hodgkin's disease after treatment with adriamycin, bleomycin, vinblastine and dacarbazine (ABVD). Cancer Chemotherapy and Pharmacology, 2, 101–105.

    Article  CAS  PubMed  Google Scholar 

  103. Cushing, B., Giller, R., Cullen, J. W., et al. (2004). Randomized Comparison of Combination Chemotherapy With Etoposide, Bleomycin, and Either High-Dose or Standard-Dose Cisplatin in Children and Adolescents With High-Risk Malignant Germ Cell Tumors: A Pediatric Intergroup Study—Pediatric Oncology Group 9049 and Children's Cancer Group 8882. Journal of Clinical Oncology, 22, 2691–2700.

    Article  CAS  PubMed  Google Scholar 

  104. De Lena, M., Guzzon, A., Monfardini, S., & Bonadonna, G. (1972). Clinical, radiologic, and histopathologic studies on pulmonary toxicity induced by treatment with bleomycin (NSC-125066). Cancer Chemotherapy Reports, 56, 343–356.

    PubMed  Google Scholar 

  105. Van Barneveld, P. W., van der Mark, T. W., Sleijfer, D. T., et al. (1984). Predictive factors for bleomycin-induced pneumonitis. The American Review of Respiratory Disease, 130, 1078–1081.

    PubMed  Google Scholar 

  106. Holoye, P. Y., Luna, M. A., MacKay, B., & Bedrossian, C. W. (1978). Bleomycin hypersensitivity pneumonitis. Annals of Internal Medicine, 88, 47–49.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, F., Zhang, L., Jiang, H. S., et al. (2011). Mobilization of bone marrow cells by CSF3 protects mice from bleomycin-induced lung injury. Respiration, 82, 358–368.

    Article  CAS  PubMed  Google Scholar 

  108. Garcia, O., Carraro, G., Turcatel, G., et al. (2013). Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS One, 8, e71679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, S. H., Lee, E. J., Lee, S. Y., et al. (2014). The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Experimental Lung Research, 40, 117–125.

    Article  CAS  PubMed  Google Scholar 

  110. Srour, N., & Thebaud, B. (2015). Mesenchymal stromal cells in animal bleomycin pulmonary fibrosis models: A systematic review. Stem Cells Translational Medicine, 4, 1500–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shentu, T. P., Wong, S., Espinoza, C., Cernelc-Kohan, M., Hagood, J., et al. (2016). The FASEB Journal, 30, 160.2-.2.

    Google Scholar 

  112. Shentu, T.-P., Huang, T.-S., Cernelc-Kohan, M., et al. (2017). Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Scientific Reports, 7, 18052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tzouvelekis, A., Paspaliaris, V., Koliakos, G., et al. (2013). A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. Journal of Translational Medicine, 11, 171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Glassberg, M. K., Minkiewicz, J., Toonkel, R. L., et al. (2017). Allogeneic Human Mesenchymal Stem Cells in Patients With Idiopathic Pulmonary Fibrosis via Intravenous Delivery (AETHER): A Phase I Safety Clinical Trial. Chest, 151, 971–981.

    Article  PubMed  Google Scholar 

  115. Weiss, D. J., Casaburi, R., Flannery, R., LeRoux-Williams, M., & Tashkin, D. P. (2013). A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest, 143, 1590–1598.

    Article  CAS  PubMed  Google Scholar 

  116. Volkova, M., & Russell, R., 3rd. (2011). Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Current Cardiology Reviews, 7, 214–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dent, R. G., & McColl, I. (1975). Letter: 5-Fluorouracil and angina. Lancet, 1, 347–348.

    Article  CAS  PubMed  Google Scholar 

  118. Sorrentino, M. F., Kim, J., Foderaro, A. E., & Truesdell, A. G. (2012). 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiology Journal, 19, 453–457.

    Article  PubMed  Google Scholar 

  119. Gianni, L., Herman, E. H., Lipshultz, S. E., Minotti, G., Sarvazyan, N., & Sawyer, D. B. (2008). Anthracycline cardiotoxicity: from bench to bedside. Journal of Clinical Oncology, 26, 3777–3784.

    Article  PubMed  Google Scholar 

  120. Tomita, S., Ishida, M., Nakatani, T., et al. (2004). Bone marrow is a source of regenerated cardiomyocytes in doxorubicin-induced cardiomyopathy and granulocyte colony-stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy. The Journal of Heart and Lung Transplantation, 23, 577–584.

    Article  PubMed  Google Scholar 

  121. Qi, Z., Zhang, Y., Liu, L., Guo, X., Qin, J., & Cui, G. (2012). Mesenchymal stem cells derived from different origins have unique sensitivities to different chemotherapeutic agents. Cell Biology International, 36, 857–862.

    Article  CAS  PubMed  Google Scholar 

  122. Lazzarini, E., Balbi, C., Altieri, P., et al. (2016). The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Scientific Reports, 6, 29994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bollini, S., Cheung, K. K., Riegler, J., et al. (2011). Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells and Development, 20, 1985–1994.

    Article  CAS  PubMed  Google Scholar 

  124. Maria, O. M., Eliopoulos, N., & Muanza, T. (2017). Radiation-Induced Oral Mucositis. Frontiers in Oncology, 7.

  125. Naidu, M. U., Ramana, G. V., Rani, P. U., Mohan, I. K., Suman, A., & Roy, P. (2004). Chemotherapy-induced and/or radiation therapy-induced oral mucositis--complicating the treatment of cancer. Neoplasia, 6, 423–431.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Köstler, W. J., Hejna, M., Wenzel, C., & Zielinski, C. C. (2001). Oral mucositis complicating chemotherapy and/or radiotherapy: options for prevention and treatment. CA: a Cancer Journal for Clinicians, 51, 290–315.

    Google Scholar 

  127. Bellm, L. A., Epstein, J. B., Rose-Ped, A., Martin, P., & Fuchs, H. J. (2000). Patient reports of complications of bone marrow transplantation. Support Care Cancer, 8, 33–39.

    CAS  PubMed  Google Scholar 

  128. Zhang, Q., Nguyen, A. L., Shi, S., et al. (2011). Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem cells and Development, 21, 937–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bhatt A. Mesenchymal Stem Cells from Human Gingiva Ameliorate Murine Alimentary Mucositis: University of Southern California; 2011.

  130. Maria, O. M., Shalaby, M., Syme, A., Eliopoulos, N., & Muanza, T. (2016). Adipose mesenchymal stromal cells minimize and repair radiation-induced oral mucositis. Cytotherapy, 18, 1129–1145.

    Article  CAS  PubMed  Google Scholar 

  131. Schmidt, M., Haagen, J., Noack, R., Siegemund, A., Gabriel, P., & Dorr, W. (2014). Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation. Strahlentherapie und Onkologie, 190, 399–404.

    Article  CAS  PubMed  Google Scholar 

  132. Schmidt, M., Piro-Hussong, A., Siegemund, A., Gabriel, P., & Dorr, W. (2014). Modification of radiation-induced oral mucositis (mouse) by adult stem cell therapy: single-dose irradiation. Radiation and Environmental Biophysics, 53, 629–634.

    Article  CAS  PubMed  Google Scholar 

  133. Jensen, S. B., Pedersen, A. M. L., Vissink, A., et al. (2010). A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Supportive Care in Cancer, 18, 1039–1060.

    Article  CAS  PubMed  Google Scholar 

  134. Lombaert, I. M., Wierenga, P. K., Kok, T., Kampinga, H. H., deHaan, G., & Coppes, R. P. (2006). Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clinical Cancer Research, 12, 1804–1812.

    Article  CAS  PubMed  Google Scholar 

  135. Pignon, J. P., Bourhis, J., Domenge, C., & Designé, L. (2000). Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. The Lancet, 355, 949–955.

    Article  CAS  Google Scholar 

  136. Ruhle, A., Perez, R. L., Glowa, C., et al. (2017). Cisplatin radiosensitizes radioresistant human mesenchymal stem cells. Oncotarget, 8, 87809–87820.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Verstappen, C. C. P., Heimans, J. J., Hoekman, K., & Postma, T. J. (2003). Neurotoxic Complications of Chemotherapy in Patients with Cancer. Drugs, 63, 1549–1563.

    Article  CAS  PubMed  Google Scholar 

  138. Petrou, P., Gothelf, Y., Argov, Z., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurology, 73, 337–344.

    Article  PubMed  Google Scholar 

  139. Venkataramana, N. K., Kumar, S. K. V., Balaraju, S., et al. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Translational Research, 155, 62–70.

    Article  CAS  PubMed  Google Scholar 

  140. Connick, P., Kolappan, M., Crawley, C., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. The Lancet Neurology, 11, 150–156.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wakabayashi, K., Nagai, A., Sheikh, A. M., et al. (2010). Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. Journal of Neuroscience Research, 88, 1017–1025.

    CAS  PubMed  Google Scholar 

  142. Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711–10716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research, 61, 364–370.

    Article  CAS  PubMed  Google Scholar 

  144. Lo Furno, D., Mannino, G., & Giuffrida, R. (2018). Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. Journal of Cellular Physiology, 233, 3982–3999.

    Article  CAS  PubMed  Google Scholar 

  145. Neirinckx, V., Coste, C., Rogister, B., & Wislet-Gendebien, S. (2013). Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Translational Medicine, 2, 284–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Salehi, H., Amirpour, N., Niapour, A., & Razavi, S. (2016). An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Reviews and Reports, 12, 26–41.

    Article  CAS  PubMed  Google Scholar 

  147. Alizadeh, R., Bagher, Z., Kamrava, S. K., et al. (2019). Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. Journal of Chemical Neuroanatomy, 96, 126–133.

    Article  CAS  PubMed  Google Scholar 

  148. Chen, J., Li, Y., Wang, L., et al. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32, 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  149. Munz, F., Lopez Perez, R., Trinh, T., et al. (2018). Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Scientific Reports, 8, 312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Harris, W. M., Zhang, P., Plastini, M., et al. (2017). Evaluation of function and recovery of adipose-derived stem cells after exposure to paclitaxel. Cytotherapy, 19, 211–221.

    Article  CAS  PubMed  Google Scholar 

  151. Choron, R. L., Chang, S., Khan, S., et al. (2015). Paclitaxel impairs adipose stem cell proliferation and differentiation. The Journal of Surgical Research, 196, 404–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, J., Law, H. K., Lau, Y. L., & Chan, G. C. (2004). Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. British Journal of Haematology, 127, 326–334.

    Article  CAS  PubMed  Google Scholar 

  153. Meirow, D., & Nugent, D. (2001). The effects of radiotherapy and chemotherapy on female reproduction. Human Reproduction Update, 7, 535–543.

    Article  CAS  PubMed  Google Scholar 

  154. Warne, G., Fairley, K., Hobbs, J. B., & Martin, F. (1973). Cyclophosphamide-induced ovarian failure. New England Journal of Medicine, 289, 1159–1162.

    Article  CAS  Google Scholar 

  155. McDermott, E. M., & Powell, R. J. (1996). Incidence of ovarian failure in systemic lupus erythematosus after treatment with pulse cyclophosphamide. Annals of the Rheumatic Diseases, 55, 224–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Blumenfeld, Z. (2007). How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist cotreatment in addition to cryopreservation of embrya, oocytes, or ovaries. The Oncologist, 12, 1044–1054.

    Article  PubMed  Google Scholar 

  157. Liu, T., Huang, Y., Guo, L., Cheng, W., & Zou, G. (2012). CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. International Journal of Medical Sciences, 9, 592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hershlag, A., & Schuster, M. W. (2002). Return of fertility after autologous stem cell transplantation. Fertility and Sterility, 77, 419–421.

    Article  PubMed  Google Scholar 

  159. Telfer, E. E., Gosden, R. G., Byskov, A. G., et al. (2005). On regenerating the ovary and generating controversy. Cell, 122, 821–822.

    Article  CAS  PubMed  Google Scholar 

  160. Edessy, M., Hosni, H. N., Shady, Y., Waf, Y., Bakr, S., & Kamel, M. (2016). Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure. Acta Medica International, 3, 19.

    Article  Google Scholar 

  161. Yang, M. Y., & Fortune, J. E. (2007). Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Molecular Reproduction and Development, 74, 1095–1104.

    Article  CAS  PubMed  Google Scholar 

  162. Lee, S. J., Schover, L. R., Partridge, A. H., et al. (2006). American Society of Clinical Oncology Recommendations on Fertility Preservation in Cancer Patients. Journal of Clinical Oncology, 24, 2917–2931.

    Article  PubMed  Google Scholar 

  163. Tal, R., Botchan, A., Hauser, R., Yogev, L., Paz, G., & Yavetz, H. (2000). Follow-up of sperm concentration and motility in patients with lymphoma. Human Reproduction, 15, 1985–1988.

    Article  CAS  PubMed  Google Scholar 

  164. Nayernia, K., Lee, J. H., Drusenheimer, N., et al. (2006). Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 86, 654–663.

    Article  CAS  PubMed  Google Scholar 

  165. Yazawa, T., Mizutani, T., Yamada, K., et al. (2006). Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinology, 147, 4104–4111.

    Article  CAS  PubMed  Google Scholar 

  166. Bhartiya, D. (2013). Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells International, 2013, 6.

    Google Scholar 

  167. Wuchter, P., Bieback, K., Schrezenmeier, H., et al. (2015). Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 17, 128–139.

    Article  CAS  PubMed  Google Scholar 

  168. Sensebe, L., Gadelorge, M., & Fleury-Cappellesso, S. (2013). Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Research & Therapy, 4, 66.

    Article  CAS  Google Scholar 

  169. Witzeneder, K., Lindenmair, A., Gabriel, C., et al. (2013). Human-derived alternatives to fetal bovine serum in cell culture. Transfusion Medicine and Hemotherapy, 40, 417–423.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bieback, K., Hecker, A., Kocaomer, A., et al. (2009). Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells, 27, 2331–2341.

    Article  CAS  PubMed  Google Scholar 

  171. Schallmoser, K., Bartmann, C., Rohde, E., et al. (2007). Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 47, 1436–1446.

    Article  CAS  PubMed  Google Scholar 

  172. Hsieh, J. Y., Fu, Y. S., Chang, S. J., Tsuang, Y. H., & Wang, H. W. (2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem Cells and Development, 19, 1895–1910.

    Article  CAS  PubMed  Google Scholar 

  173. Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  174. Wagner, W., Wein, F., Seckinger, A., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33, 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  175. Nicolay, N. H., Sommer, E., Perez, R. L., et al. (2014). Mesenchymal stem cells are sensitive to treatment with kinase inhibitors and ionizing radiation. Strahlenther Onkol, 190, 1037–1045.

    Article  PubMed  Google Scholar 

  176. Melzer D, Neumann U, Ebell W, et al. Imatinib mesylate (STI571) considerably affects normal human bone marrow stromal cell growth in Vitro. Am Soc Hematology; 2004.

  177. Normanno, N., De Luca, A., Aldinucci, D., et al. (2005). Gefitinib inhibits the ability of human bone marrow stromal cells to induce osteoclast differentiation: implications for the pathogenesis and treatment of bone metastasis. Endocrine-Related Cancer, 12, 471–482.

    Article  CAS  PubMed  Google Scholar 

  178. Ewer, S. M., & Ewer, M. S. (2008). Cardiotoxicity profile of trastuzumab. Drug Safety, 31, 459–467.

    Article  CAS  PubMed  Google Scholar 

  179. Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature Immunology, 15, 1009.

    Article  CAS  PubMed  Google Scholar 

  180. Chen, Y., Chen, S., Liu, L.-Y., et al. (2014). Mesenchymal stem cells ameliorate experimental autoimmune hepatitis by activation of the programmed death 1 pathway. Immunology Letters, 162, 222–228.

    Article  CAS  PubMed  Google Scholar 

  181. Rasmusson, I., Ringdén, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.

    Article  PubMed  Google Scholar 

  182. Studeny, M., Marini, F. C., Dembinski, J. L., et al. (2004). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96, 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  183. Christodoulou, I., Goulielmaki, M., Devetzi, M., Panagiotidis, M., Koliakos, G., & Zoumpourlis, V. (2018). Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Research & Therapy, 9, 336.

    Article  CAS  Google Scholar 

  184. Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini, F., 3rd. (2011). Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells, 29, 11–19.

    Article  CAS  PubMed  Google Scholar 

  185. Schroeder, T., Geyh, S., Germing, U., & Haas, R. (2016). Mesenchymal stromal cells in myeloid malignancies. Blood Research, 51, 225–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Geyh, S., Rodriguez-Paredes, M., Jager, P., et al. (2016). Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 30, 683–691.

    Article  CAS  PubMed  Google Scholar 

  187. Geyh, S., Oz, S., Cadeddu, R. P., et al. (2013). Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia, 27, 1841–1851.

    Article  CAS  PubMed  Google Scholar 

  188. Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Breast Cancer Research, 67, 9142–9149.

    CAS  Google Scholar 

  189. Meza-Zepeda, L. A., Noer, A., Dahl, J. A., Micci, F., Myklebost, O., & Collas, P. (2008). High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 12, 553–563.

    Article  CAS  PubMed  Google Scholar 

  190. Røsland, G. V., Svendsen, A., Torsvik, A., et al. (2009). Long-term Cultures of Bone Marrow–Derived Human Mesenchymal Stem Cells Frequently Undergo Spontaneous Malignant Transformation. Cancer Research, 69, 5331–5339.

    Article  CAS  PubMed  Google Scholar 

  191. Rubio, D., Garcia-Castro, J., Martín, M. C., et al. (2005). Spontaneous Human Adult Stem Cell Transformation. Cancer Research, 65, 3035–3039.

    Article  CAS  PubMed  Google Scholar 

  192. Torsvik, A., Røsland, G. V., Svendsen, A., et al. (2010). Spontaneous Malignant Transformation of Human Mesenchymal Stem Cells Reflects Cross-Contamination: Putting the Research Field on Track – Letter. Cancer Research, 70, 6393–6396.

    Article  CAS  PubMed  Google Scholar 

  193. Barkholt, L., Flory, E., Jekerle, V., et al. (2013). Risk of tumorigenicity in mesenchymal stromal cell-based therapies--bridging scientific observations and regulatory viewpoints. Cytotherapy, 15, 753–759.

    Article  PubMed  Google Scholar 

  194. Tarte, K., Gaillard, J., Lataillade, J.-J., et al. (2010). Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 115, 1549–1553.

    Article  CAS  PubMed  Google Scholar 

  195. Reeder, C. E., & Gordon, D. (2006). Managing oncology costs. American Journal of Managed Care, 12, S3.

    Google Scholar 

  196. Pereira Chilima, T. D., Moncaubeig, F., & Farid, S. S. (2018). Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochemical Engineering Journal, 137, 132–151.

    Article  CAS  Google Scholar 

  197. Galipeau, J., & Sensébé, L. (2018). Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell, 22, 824–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sheridan C. First off-the-shelf mesenchymal stem cell therapy nears European approval. Nature Publishing Group; 2018.

  199. Yu, T. T. L., Gupta, P., Ronfard, V., Vertes, A. A., & Bayon, Y. (2018). Recent progress in european advanced therapy medicinal products and beyond. Frontiers in Bioengineering and Biotechnology, 6, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Panes, J., Garcia-Olmo, D., Van Assche, G., et al. (2016). Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial. Lancet, 388, 1281–1290.

    Article  PubMed  Google Scholar 

  201. Waltz, E. (2013). Mesoblast acquires Osiris' stem cell business. Nature Biotechnology, 31, 1061.

    Article  CAS  Google Scholar 

  202. Cuende, N., Rasko, J. E. J., Koh, M. B. C., Dominici, M., & Ikonomou, L. (2018). Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 20, 1401–1413.

    Article  PubMed  Google Scholar 

  203. Bach, P. B., Giralt, S. A., & Saltz, L. B. (2017). FDA Approval of tisagenlecleucel: promise and complexities of a $475 000 cancer DRUGFDA approval of tisagenlecleucel as CAR-T therapy for Leukemia FDA approval of Tisagenlecleucel as CAR-T Therapy for Leukemia. Journal of the American Medical Association, 318, 1861–1862.

    Article  PubMed  Google Scholar 

  204. van Nimwegen, K. J., van Soest, R. A., Veltman, J. A., et al. (2016). Is the $1000 genome as near as we think? A cost analysis of next-generation sequencing. Clinical Chemistry, 62, 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  205. Chaudhury, S., Nemecek, E. R., Mahadeo, K. M., et al. (2018). A Phase 3 Single-Arm, Prospective Study of Remestemcel-L, Ex-Vivo Cultured Adult Human Mesenchymal Stromal Cells, for the Treatment of Steroid Refractory Acute Gvhd in Pediatric Patients. Biology of Blood and Marrow Transplantation, 24, S171–S1S2.

    Article  Google Scholar 

  206. Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringden, O. (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–896.

    Article  CAS  PubMed  Google Scholar 

  207. Hare, J. M., Fishman, J. E., Gerstenblith, G., et al. (2012). Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Jama, 308, 2369–2379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rühle A, Huber PE. [Normal tissue: radiosensitivity, toxicity, consequences for planning]. Radiologe 2018.

  209. Rühle, A., Huber, P. E., Saffrich, R., Lopez Perez, R., & Nicolay, N. H. (2018). The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. International Journal of Cancer.

  210. Zhuo, Y., Li, S. H., Chen, M. S., et al. (2010). Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: combined consequences for cell therapy in older recipients. The Journal of Thoracic and Cardiovascular Surgery, 139, 1286-94, 94 e1-2.

    Article  Google Scholar 

  211. Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev, 129, 163–173.

    Article  CAS  PubMed  Google Scholar 

  212. Lund, T. C., Kobs, A., Blazar, B. R., & Tolar, J. (2010). Mesenchymal stromal cells from donors varying widely in age are of equal cellular fitness after in vitro expansion under hypoxic conditions. Cytotherapy, 12, 971–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the scientific support of Rainer Saffrich, Patrick Wuchter, Klaus-Josef Weber and Jürgen Debus. The authors also thank the research group members Thuy Trinh, Sonevisay Sisombath, Marina Szymbara, Alexandra Tietz, Franziska Münz, Oliver Xia and Jannek Brauer for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils H. Nicolay.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rühle, A., Lopez Perez, R., Zou, B. et al. The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage. Stem Cell Rev and Rep 15, 356–373 (2019). https://doi.org/10.1007/s12015-019-09886-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09886-3

Keywords

Navigation