Skip to main content

Advertisement

Log in

An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Diecke, S., Jung, S. M., Lee, J., & Ju, J. H. (2014). Recent technological updates and clinical applications of induced pluripotent stem cells. The Korean Journal of Internal Medicine, 29, 547–557.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wan, W., Cao, L., Kalionis, B., Xia, S., & Tai, X. (2015). Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells International, 2015, 382530.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Medvedev, S. P., Shevchenko, A. I., & Zakian, S. M. (2010). Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae, 2, 18–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.

    Article  CAS  PubMed  Google Scholar 

  5. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.

    Article  CAS  PubMed  Google Scholar 

  6. Halvorsen, Y. D., Franklin, D., Bond, A. L., et al. (2001). Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Engineering, 7, 729–741.

    Article  CAS  PubMed  Google Scholar 

  7. Hicok, K. C., Du Laney, T. V., Zhou, Y. S., et al. (2004). Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Engineering, 10, 371–380.

    Article  CAS  PubMed  Google Scholar 

  8. Erickson, G. R., Gimble, J. M., Franklin, D. M., Rice, H. E., Awad, H., & Guilak, F. (2002). Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 290, 763–769.

    Article  CAS  PubMed  Google Scholar 

  9. Seo, M. J., Suh, S. Y., Bae, Y. C., & Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications, 328, 258–264.

    Article  CAS  PubMed  Google Scholar 

  10. Halvorsen, Y. D., Bond, A., Sen, A., et al. (2001). Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism: Clinical and Experimental, 50, 407–413.

    Article  CAS  Google Scholar 

  11. Ashjian, P. H., Elbarbary, A. S., Edmonds, B., et al. (2003). In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic and Reconstructive Surgery, 111, 1922–1931.

    Article  PubMed  Google Scholar 

  12. Safford, K. M., Hicok, K. C., Safford, S. D., et al. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294, 371–379.

    Article  CAS  PubMed  Google Scholar 

  13. Safford, K. M., Safford, S. D., Gimble, J. M., Shetty, A. K., & Rice, H. E. (2004). Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Experimental Neurology, 187, 319–328.

    Article  CAS  PubMed  Google Scholar 

  14. Planat-Benard, V., Menard, C., Andre, M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.

    Article  CAS  PubMed  Google Scholar 

  15. Song, Y. H., Gehmert, S., Sadat, S., et al. (2007). VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochemical and Biophysical Research Communications, 354, 999–1003.

    Article  CAS  PubMed  Google Scholar 

  16. Miranville, A., Heeschen, C., Sengenes, C., Curat, C. A., Busse, R., & Bouloumie, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.

    Article  CAS  PubMed  Google Scholar 

  17. Planat-Benard, V., Silvestre, J. S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656–663.

    Article  PubMed  Google Scholar 

  18. Rehman, J., Traktuev, D., Li, J., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.

    Article  PubMed  Google Scholar 

  19. Krampera, M., Pasini, A., Pizzolo, G., Cosmi, L., Romagnani, S., & Annunziato, F. (2006). Regenerative and immunomodulatory potential of mesenchymal stem cells. Current Opinion in Pharmacology, 6, 435–441.

    Article  CAS  PubMed  Google Scholar 

  20. McIntosh, K., Zvonic, S., Garrett, S., et al. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 24, 1246–1253.

    Article  CAS  PubMed  Google Scholar 

  21. Razavi, S., Mardani, M., Kazemi, M., et al. (2013). Effect of leukemia inhibitory factor on the myelinogenic ability of schwann-like cells induced from human adipose-derived stem cells. Cellular and Molecular Neurobiology, 33, 283–289.

    Article  CAS  PubMed  Google Scholar 

  22. Ulrich, H., do Nascimento, I. C., Bocsi, J., & Tárnok, A. (2015). Immunomodulation in stem cell differentiation into neurons and brain repair. Stem Cell Reviews and Reports, 11, 474–486.

    Article  CAS  PubMed  Google Scholar 

  23. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  24. Erba, P., Terenghi, G., & Kingham, P. J. (2010). Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Current Stem Cell Research & Therapy, 5, 153–160.

    Article  CAS  Google Scholar 

  25. Ying, C., Hu, W., Cheng, B., Zheng, X., & Li, S. (2012). Neural differentiation of rat adipose-derived stem cells in vitro. Cellular and Molecular Neurobiology, 32, 1255–1263.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, J. M., Bunnell, B. A., & Kang, S. K. (2011). Neural differentiation of human adipose tissue-derived stem cells. Methods in Molecular Biology, 702, 219–231.

    Article  CAS  PubMed  Google Scholar 

  27. Zavan, B., Vindigni, V., Gardin, C., et al. (2010). Neural potential of adipose stem cells. Discovery Medicine, 10, 37–43.

    PubMed  Google Scholar 

  28. Kokai, L. E., Rubin, J. P., & Marra, K. G. (2005). The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plastic and Reconstructive Surgery, 116, 1453–1460.

    Article  CAS  PubMed  Google Scholar 

  29. Razavi, S., Razavi, M. R., Zarkesh Esfahani, H., Kazemi, M., & Mostafavi, F. S. (2013). Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Development, Growth & Differentiation, 55, 648–655.

    Article  CAS  Google Scholar 

  30. Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery : VS, 36, 613–622.

    Article  Google Scholar 

  31. Tholpady, S. S., Katz, A. J., & Ogle, R. C. (2003). Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. The Anatomical record Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 272, 398–402.

    Article  CAS  PubMed  Google Scholar 

  32. Fraser, J. K., Zhu, M., Wulur, I., & Alfonso, Z. (2008). Adipose-derived stem cells. Methods in Molecular Biology, 449, 59–67.

    PubMed  Google Scholar 

  33. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  34. De Ugarte, D. A., Morizono, K., Elbarbary, A., et al. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells, Tissues, Organs, 174, 101–109.

    Article  PubMed  Google Scholar 

  35. Aust, L., Devlin, B., Foster, S. J., et al. (2004). Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 6, 7–14.

    Article  CAS  PubMed  Google Scholar 

  36. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., et al. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8, 166–177.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochemistry and Function, 26, 664–675.

    Article  CAS  PubMed  Google Scholar 

  38. Guilak, F., Lott, K. E., Awad, H. A., et al. (2006). Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. Journal of Cellular Physiology, 206, 229–237.

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell, J. B., McIntosh, K., Zvonic, S., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376–385.

    Article  PubMed  Google Scholar 

  40. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  41. Boquest, A. C., Shahdadfar, A., Fronsdal, K., et al. (2005). Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Molecular Biology of the Cell, 16, 1131–1141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Varma, M. J., Breuls, R. G., Schouten, T. E., et al. (2007). Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells and Development, 16, 91–104.

    Article  PubMed  Google Scholar 

  43. Schellenberg, A., Stiehl, T., Horn, P., et al. (2012). Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy, 14, 401–411.

    Article  CAS  PubMed  Google Scholar 

  44. Le Blanc, K. (2003). Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy, 5, 485–489.

    Article  PubMed  Google Scholar 

  45. Siegel, G., Schafer, R., & Dazzi, F. (2009). The immunosuppressive properties of mesenchymal stem cells. Transplantation, 87, S45–S49.

    Article  PubMed  Google Scholar 

  46. Mimeault, M., & Batra, S. K. (2008). Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Reviews, 4, 27–49.

    Article  PubMed  Google Scholar 

  47. Franco Lambert, A. P., Fraga Zandonai, A., Bonatto, D., Cantarelli Machado, D., & Pegas Henriques, J. A. (2009). Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation; Research in Biological Diversity, 77, 221–228.

    Article  PubMed  CAS  Google Scholar 

  48. Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Krampera, M., Marconi, S., Pasini, A., et al. (2007). Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone, 40, 382–390.

    Article  CAS  PubMed  Google Scholar 

  50. Changqing Ye, X. Y., Liu, H., Cai, Y., & Ya, O. (2010). Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells. Neural Regen Res, 5, 1456–1463.

    Google Scholar 

  51. Jang, S., Cho, H. H., Cho, Y. B., Park, J. S., & Jeong, H. S. (2010). Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biology, 11, 25.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Cardozo, A. J., Gomez, D. E., & Argibay, P. F. (2011). Transcriptional characterization of Wnt and notch signaling pathways in neuronal differentiation of human adipose tissue-derived stem cells. Journal of Molecular Neuroscience, 44, 186–194.

    Article  CAS  PubMed  Google Scholar 

  53. Li, H., Han, Z., Liu, D., Zhao, P., Liang, S., & Xu, K. (2013). Autologous platelet-rich plasma promotes neurogenic differentiation of human adipose-derived stem cells in vitro. The International Journal of Neuroscience, 123, 184–190.

    Article  CAS  PubMed  Google Scholar 

  54. Xu, F. T., Li, H. M., Yin, Q. S., et al. (2014). Effect of ginsenoside Rg1 on proliferation and neural phenotype differentiation of human adipose-derived stem cells in vitro. Canadian Journal of Physiology and Pharmacology, 92, 467–475.

    Article  CAS  PubMed  Google Scholar 

  55. Wu, J., Pan, Z., Cheng, M., et al. (2013). Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway. Neurochemistry International, 62, 92–102.

    Article  CAS  PubMed  Google Scholar 

  56. Elena Anghileri, S. M., Pignatelli, A., Cifelli, P., Galié, M., Sbarbati, A., Krampera, M., Belluzzi, O., & Bonetti, B. (2008). Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells and Development, 17, 909–916.

    Article  PubMed  Google Scholar 

  57. Zavan, B. M. L., Lancerotto, L., Della Puppa, A., D’Avella, D., Abatangelo, G., Vindigni, V., & Cortivo, R. (2010). Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurological Research, 32, 47–54.

    Article  PubMed  Google Scholar 

  58. Ahmadi, N., Razavi, S., Kazemi, M., & Oryan, S. (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue & Cell, 44, 87–94.

    Article  CAS  Google Scholar 

  59. Razavi, S. A. N., Kazemi, M., Mardani, M., & Esfandiari, E. (2012). Efficient transdifferentiation of human adipose-derived stem cells into schwann-like cells : a promise for treatment of demyelinating diseases. Adv Biomed Res, 1, 12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Qian, D. X., Zhang, H. T., Ma, X., Jiang, X. D., & Xu, R. X. (2010). Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochemical Research, 35, 572–579.

    Article  CAS  PubMed  Google Scholar 

  61. Berg, J., Roch, M., Altschuler, J., et al. (2015). Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for parkinson’s disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids. Stem Cell Reviews, 11, 133–149.

    Article  CAS  PubMed  Google Scholar 

  62. Katayama, M., & Ishii, K. (1994). 2-mercaptoethanol-independent survival of fetal mouse brain neurons cultured in a medium of human serum. Brain Research, 656, 409–412.

    Article  CAS  PubMed  Google Scholar 

  63. Kashafi, E., Jashni, H. K., Erfaniyan, S., Solhjou, K., Sepidkar, A., & Fakhryniya, H. (2013). Transdifferentiation of human synovium-derived mesenchymal stem cell into neuronal-like cells in vitro. Journal of Jahrom University of Medical Sciences, 11, 31–38.

    Google Scholar 

  64. Tao, H., Rao, R., & Ma, D. D. (2005). Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Development, Growth & Differentiation, 47, 423–433.

    Article  CAS  Google Scholar 

  65. Schneider, N., Lanz, S., Ramer, R., Schaefer, D., & Goppelt-Struebe, M. (2001). Up-regulation of cyclooxygenase-1 in neuroblastoma cell lines by retinoic acid and corticosteroids. Journal of Neurochemistry, 77, 416–424.

    Article  CAS  PubMed  Google Scholar 

  66. Kim, H. S., Song, M., Kim, E., Ryu, S. H., & Suh, P. G. (2003). Dexamethasone differentiates NG108-15 cells through cyclooxygenase 1 induction. Experimental & Molecular Medicine, 35, 203–210.

    Article  CAS  Google Scholar 

  67. Cai, L., Johnstone, B. H., Cook, T. G., et al. (2009). IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells, 27, 230–237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Yang, Z., Li, K., Yan, X., Dong, F., & Zhao, C. (2010). Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe’s Rrchive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, 248, 1415–1422.

    Article  Google Scholar 

  69. Scholz, T., Sumarto, A., Krichevsky, A., & Evans, G. R. (2011). Neuronal differentiation of human adipose tissue-derived stem cells for peripheral nerve regeneration in vivo. Archives of Surgery, 146, 666–674.

    Article  PubMed  Google Scholar 

  70. Ra, J. C., Shin, I. S., Kim, S. H., et al. (2011). Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells and Development, 20, 1297–1308.

    Article  CAS  PubMed  Google Scholar 

  71. Ghasemi, N., Razavi, S., Mardani, M., Esfandiari, E., Salehi, H., & Zarkesh Esfahani, S. H. (2014). Transplantation of human adipose-derived stem cells enhances remyelination in lysolecithin-induced focal demyelination of rat spinal cord. Molecular Biotechnology, 56, 470–478.

    Article  CAS  PubMed  Google Scholar 

  72. McCain, J. (2013). The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. P & T : A peer-Reviewed Journal for Formulary Management, 38, 96–108.

    Google Scholar 

  73. Pearson, G., Robinson, F., Beers Gibson, T., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22, 153–183.

    CAS  PubMed  Google Scholar 

  74. Bucci, C., Alifano, P., & Cogli, L. (2014). The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes, 4, 642–677.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Karaoz, E., Demircan, P. C., Saglam, O., Aksoy, A., Kaymaz, F., & Duruksu, G. (2011). Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochemistry and Cell Biology, 136, 455–473.

    Article  PubMed  CAS  Google Scholar 

  76. Kiraly, M., Porcsalmy, B., Pataki, A., et al. (2009). Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry International, 55, 323–332.

    Article  CAS  PubMed  Google Scholar 

  77. Airaksinen, M. S., & Saarma, M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nature Reviews Neuroscience, 3, 383–394.

    Article  CAS  PubMed  Google Scholar 

  78. Osaki, M., Oshimura, M., & Ito, H. (2004). PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis : An international Journal on Programmed Cell Death, 9, 667–676.

    Article  CAS  Google Scholar 

  79. Minichiello, L. (2009). TrkB signalling pathways in LTP and learning. Nature Reviews Neuroscience, 10, 850–860.

    Article  CAS  PubMed  Google Scholar 

  80. Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular biology Reviews : MMBR, 75, 50–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Park, S., Jung, H. H., Park, Y. H., Ahn, J. S., & Im, Y. H. (2011). ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochemical and Biophysical Research Communications, 407, 680–686.

    Article  CAS  PubMed  Google Scholar 

  82. Cardozo, A., Ielpi, M., Gomez, D., & Argibay, P. (2010). Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expression, 14, 307–319.

    Article  PubMed  Google Scholar 

  83. Cardozo, A. J., Gomez, D. E., & Argibay, P. F. (2012). Neurogenic differentiation of human adipose-derived stem cells: relevance of different signaling molecules, transcription factors, and key marker genes. Gene, 511, 427–436.

    Article  CAS  PubMed  Google Scholar 

  84. Virginie Neirinckx, Cécile Coste, Bernard Rogister, Sabine Wislet-Gendebien. Neural fate of mesenchymal stem cells and neural crest stem cells: which ways to get neurons for cell therapy purpose? In: trends in cell signaling pathways in neuronal fate decision INTECH open access publisher; 2013 327–58.

  85. Duester, G. (2008). Retinoic acid synthesis and signaling during early organogenesis. Cell, 134, 921–931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Gudas, L. J., & Wagner, J. A. (2011). Retinoids regulate stem cell differentiation. Journal of Cellular Physiology, 226, 322–330.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Cai, A. Q., Radtke, K., Linville, A., Lander, A. D., Nie, Q., & Schilling, T. F. (2012). Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development, 139, 2150–2155.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Glover, J. C., Renaud, J. S., & Rijli, F. M. (2006). Retinoic acid and hindbrain patterning. Journal of Neurobiology, 66, 705–725.

    Article  CAS  PubMed  Google Scholar 

  89. Mark, M., Kastner, P., Ghyselinck, N. B., Krezel, W., Dupe, V., & Chambon, P. (1997). Genetic control of the development by retinoic acid. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 191, 77–90.

    CAS  PubMed  Google Scholar 

  90. Mascrez, B., Mark, M., Dierich, A., Ghyselinck, N. B., Kastner, P., & Chambon, P. (1998). The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development. Development, 125, 4691–4707.

    CAS  PubMed  Google Scholar 

  91. Ghyselinck, N. B., Dupe, V., Dierich, A., et al. (1997). Role of the retinoic acid receptor beta (RARbeta) during mouse development. The International Journal of Developmental Biology, 41, 425–447.

    CAS  PubMed  Google Scholar 

  92. Liao, W. L., & Liu, F. C. (2005). RARbeta isoform-specific regulation of DARPP-32 gene expression: an ectopic expression study in the developing rat telencephalon. The European Journal of Neuroscience, 21, 3262–3268.

    Article  PubMed  Google Scholar 

  93. Bi, Y., Gong, M., Zhang, X., et al. (2010). Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells. Development, Growth & Differentiation, 52, 419–431.

    Article  CAS  Google Scholar 

  94. Goncalves, M. B., Boyle, J., Webber, D. J., Hall, S., Minger, S. L., & Corcoran, J. P. (2005). Timing of the retinoid-signalling pathway determines the expression of neuronal markers in neural progenitor cells. Developmental Biology, 278, 60–70.

    Article  CAS  PubMed  Google Scholar 

  95. Franca Scintu, C. R. (2006). Rita pillai, manuela badiali, adele maria sanna, francesca argiolu, maria serafina ristaldi. Valeria Sogos. Differentiation of Human bone Marrow Stem Cells into Cells with a Neural Phenotype: Diverse Effects of two Specific Treatments. BMC Neuroscience, 7, 14.

    PubMed  Google Scholar 

  96. Kim, C., Cheng, C. Y., Saldanha, S. A., & Taylor, S. S. (2007). PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell, 130, 1032–1043.

    Article  CAS  PubMed  Google Scholar 

  97. Castro, A., Jerez, M. J., Gil, C., & Martinez, A. (2005). Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Medicinal Research Reviews, 25, 229–244.

    Article  CAS  PubMed  Google Scholar 

  98. Dorsa, K. K., Santos, M. V., & Silva, M. R. (2010). Enhancing T3 and cAMP responsive gene participation in the thermogenic regulation of fuel oxidation pathways. Arquivos Brasileiros de Endocrinologia e Metabologia, 54, 381–389.

    Article  PubMed  Google Scholar 

  99. Dugan, L. L., Kim, J. S., Zhang, Y., et al. (1999). Differential effects of cAMP in neurons and astrocytes. Role of B-raf. The Journal of Biological Chemistry, 274, 25842–25848.

    Article  CAS  PubMed  Google Scholar 

  100. Sanchez, S., Jimenez, C., Carrera, A. C., Diaz-Nido, J., Avila, J., & Wandosell, F. (2004). A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochemistry International, 44, 231–242.

    Article  CAS  PubMed  Google Scholar 

  101. Ivins, J. K., Parry, M. K., & Long, D. A. (2004). A novel cAMP-dependent pathway activates neuronal integrin function in retinal neurons. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 24, 1212–1216.

    Article  CAS  Google Scholar 

  102. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.

    Article  CAS  PubMed  Google Scholar 

  103. Dworkin, S., Heath, J. K., deJong-Curtain, T. A., et al. (2007). CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Developmental Biology, 307, 127–141.

    Article  CAS  PubMed  Google Scholar 

  104. Mantamadiotis, T., Lemberger, T., Bleckmann, S. C., et al. (2002). Disruption of CREB function in brain leads to neurodegeneration. Nature Genetics, 31, 47–54.

    Article  CAS  PubMed  Google Scholar 

  105. Gallagher, H. C., Bacon, C. L., Odumeru, O. A., Gallagher, K. F., Fitzpatrick, T., & Regan, C. M. (2004). Valproate activates phosphodiesterase-mediated cAMP degradation: relevance to C6 glioma G1 phase progression. Neurotoxicology and Teratology, 26, 73–81.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, L., Seitz, L. C., Abramczyk, A. M., Liu, L., & Chan, C. (2011). CAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells. Cellular and Molecular life Sciences : CMLS, 68, 863–876.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. McMahon, A. P. (2000). More surprises in the hedgehog signaling pathway. Cell, 100, 185–188.

    Article  CAS  PubMed  Google Scholar 

  108. Liu, S., Dontu, G., & Wicha, M. S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer research : BCR, 7, 86–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Beachy, P. A., Hymowitz, S. G., Lazarus, R. A., Leahy, D. J., & Siebold, C. (2010). Interactions between hedgehog proteins and their binding partners come into view. Genes & Development, 24, 2001–2012.

    Article  CAS  Google Scholar 

  110. Berman, D. M., Karhadkar, S. S., Hallahan, A. R., et al. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 297, 1559–1561.

    Article  CAS  PubMed  Google Scholar 

  111. Liqing, Y., Jia, G., Jiqing, C., et al. (2011). Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. Neuroreport, 22, 370–373.

    Article  PubMed  CAS  Google Scholar 

  112. Yamanaka, H., Oue, T., Uehara, S., & Fukuzawa, M. (2010). Forskolin, a hedgehog signal inhibitor, inhibits cell proliferation and induces apoptosis in pediatric tumor cell lines. Molecular Medicine Reports, 3, 133–139.

    CAS  PubMed  Google Scholar 

  113. Hyman, J. M., Firestone, A. J., Heine, V. M., et al. (2009). Small-molecule inhibitors reveal multiple strategies for hedgehog pathway blockade. Proceedings of the National Academy of Sciences of the United States of America, 106, 14132–14137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Zhang, J., & Li, L. (2005). BMP signaling and stem cell regulation. Developmental Biology, 284, 1–11.

    Article  CAS  PubMed  Google Scholar 

  115. Mishina, Y. (2003). Function of bone morphogenetic protein signaling during mouse development. Frontiers in Bioscience : a Journal and Virtual Library, 8, d855–d869.

    Article  CAS  Google Scholar 

  116. Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147, 35–51.

    Article  CAS  PubMed  Google Scholar 

  117. Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115, 281–292.

    Article  CAS  PubMed  Google Scholar 

  118. Chen, C., Uludag, H., Wang, Z., & Jiang, H. (2012). Noggin suppression decreases BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 113, 3672–3680.

    Article  CAS  PubMed  Google Scholar 

  119. Krause, C. (2014). The Imperative Balance of Agonist and Antagonist for BMP Signalling Driven Adult Tissue Homeostasis. Austin Biomark Diagn, 1–2.

  120. Salinas, P. C. (2003). Synaptogenesis: Wnt and TGF-beta take centre stage. Current Biology : CB, 13, R60–R62.

    Article  CAS  PubMed  Google Scholar 

  121. Salinas, P. C. (2012). Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harbor Perspectives in Biology, 4.

  122. Zou, Y. (2004). Wnt signaling in axon guidance. Trends in Neurosciences, 27, 528–532.

    Article  CAS  PubMed  Google Scholar 

  123. Ring, A., Kim, Y. M., & Kahn, M. (2014). Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Reviews, 10, 512–525.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17, 9–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Choi, H. J., Park, H., Lee, H. W., & Kwon, Y. G. (2012). The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis. IUBMB Life, 64, 724–731.

    Article  CAS  PubMed  Google Scholar 

  126. Lu, J., Tan, L., Li, P., et al. (2009). All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biology, 10, 57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Jang, S., Park, J., & Jeong, H. (2015). Neural differentiation of human adipose tissue-derived stem cells involves activation of the Wnt5a/JNK signalling. Stem Cells International, 2015, 7.

    Article  Google Scholar 

  128. Rosso, S. B., & Inestrosa, N. C. (2013). WNT signaling in neuronal maturation and synaptogenesis. Frontiers in Cellular Neuroscience, 7.

  129. Bodmer, D., Levine-Wilkinson, S., Richmond, A., Hirsh, S., & Kuruvilla, R. (2009). Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29, 7569–7581.

    Article  CAS  Google Scholar 

  130. Paldino, E., Cenciarelli, C., Giampaolo, A., et al. (2014). Induction of dopaminergic neurons from human wharton’s jelly mesenchymal stem cell by forskolin. Journal of Cellular Physiology, 229, 232–244.

    Article  CAS  PubMed  Google Scholar 

  131. Kim, H., Kim, S., Song, Y., Kim, W., Ying, Q. L., & Jho, E. H. (2015). Dual function of Wnt signaling during neuronal differentiation of mouse embryonic stem cells. Stem Cells International, 2015, 459301.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164, 247–256.

    Article  CAS  PubMed  Google Scholar 

  133. Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364–370.

    Article  CAS  PubMed  Google Scholar 

  134. Yang, S., Lin, G., Tan, Y. Q., et al. (2008). Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Genes, Chromosomes & Cancer, 47, 665–679.

    Article  CAS  Google Scholar 

  135. Rodriguez, A. M., Elabd, C., Delteil, F., et al. (2004). Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochemical and Biophysical Research Communications, 315, 255–263.

    Article  CAS  PubMed  Google Scholar 

  136. Havlas, V., Kos, P., Jendelova, P., Lesny, P., Trc, T., & Sykova, E. (2011). Comparison of chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca, 78, 138–144.

    CAS  PubMed  Google Scholar 

  137. Kim, H. J., Park, S. H., Durham, J., Gimble, J. M., Kaplan, D. L., & Dragoo, J. L. (2012). In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds. Journal of Tissue engineering, 3, 2041731412466405.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  138. Yoon, I. S., Chung, C. W., Sung, J. H., et al. (2011). Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold. Journal of Bioscience and Bioengineering, 112, 402–408.

    Article  CAS  PubMed  Google Scholar 

  139. de Girolamo, L., Sartori, M. F., Albisetti, W., & Brini, A. T. (2007). Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. Journal of Tissue Engineering and Regenerative Medicine, 1, 154–157.

    Article  PubMed  CAS  Google Scholar 

  140. Fan, J., Park, H., Tan, S., & Lee, M. (2013). Enhanced osteogenesis of adipose derived stem cells with noggin suppression and delivery of BMP-2. PloS One, 8, e72474.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Luzi, E., Marini, F., Sala, S. C., Tognarini, I., Galli, G., & Brandi, M. L. (2008). Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research, 23, 287–295.

    Article  CAS  Google Scholar 

  142. Goudenege, S., Pisani, D. F., Wdziekonski, B., et al. (2009). Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Molecular Therapy, 17, 1064–1072.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Grauss, R. W., van Tuyn, J., Steendijk, P., et al. (2008). Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells, 26, 1083–1093.

    Article  PubMed  Google Scholar 

  144. Jeon, E. S., Moon, H. J., Lee, M. J., et al. (2006). Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. Journal of Cell Science, 119, 4994–5005.

    Article  CAS  PubMed  Google Scholar 

  145. Sung, M. S., Mun, J. Y., Kwon, O., Kwon, K. S., & Oh, D. B. (2013). Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein. Biochemical and Biophysical Research Communications, 437, 156–161.

    Article  CAS  PubMed  Google Scholar 

  146. Shevchenko, E. K., Makarevich, P. I., Tsokolaeva, Z. I., et al. (2013). Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. Journal of Translational Medicine, 11, 138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Bhang, S. H., Jung, M. J., Shin, J. Y., et al. (2013). Mutual effect of subcutaneously transplanted human adipose-derived stem cells and pancreatic islets within fibrin gel. Biomaterials, 34, 7247–7256.

    Article  CAS  PubMed  Google Scholar 

  148. Marappagounder, D., Somasundaram, I., Dorairaj, S., & Sankaran, R. J. (2013). Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cellular & Molecular Biology Letters, 18, 75–88.

    Article  CAS  Google Scholar 

  149. Baer, P. C., Brzoska, M., & Geiger, H. (2011). Epithelial differentiation of human adipose-derived stem cells. Methods in Molecular Biology, 702, 289–298.

    Article  CAS  PubMed  Google Scholar 

  150. Baer, P. C., Doring, C., Hansmann, M. L., Schubert, R., & Geiger, H. (2013). New insights into epithelial differentiation of human adipose-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 7, 271–278.

    Article  CAS  PubMed  Google Scholar 

  151. Griesche, N., Bereiter-Hahn, J., Geiger, H., Schubert, R., & Baer, P. C. (2012). During epithelial differentiation of human adipose-derived stromal/stem cells, expression of zonula occludens protein-1 is induced by a combination of retinoic acid, activin-a and bone morphogenetic protein-7. Cytotherapy, 14, 61–69.

    Article  CAS  PubMed  Google Scholar 

  152. Jumabay, M., Abdmaulen, R., Ly, A., et al. (2014). Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells translational Medicine, 3, 161–171.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Razavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, H., Amirpour, N., Niapour, A. et al. An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Rev and Rep 12, 26–41 (2016). https://doi.org/10.1007/s12015-015-9631-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9631-7

Keywords

Navigation