Skip to main content
Log in

Mesenchymal stem cells in progression and treatment of cancers

  • Review
  • Published:
Frontiers in Biology

Abstract

Mesenchymal stem or stromal cells (MSCs) from bone marrow or local tissues are recruited to stroma of almost all types of cancers during initiation and/or progression of cancer. The recruited MSCs and their derivative cancer-associated fibroblasts interact with cancer cells to promote stemness, invasion and metastasis of cancer cells. Targeting these cancer-recruited MSCs and/or the interaction between MSCs and cancer cells are promising strategies to improve cancer therapy. On the other hand, the unique tumor-homing capacity of MSCs makes them a promising vehicle to deliver various anti-cancer agents. This review summarized the recent advancement of our understanding on the interaction between MSCs and cancer cells, as well as the potential of MSCs for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolontrade M F, Sganga L, Piaggio E, Viale D L, Sorrentino M A, Robinson A, Sevlever G, García M G, Mazzolini G, Podhajcer O L (2012). A specific subpopulation of mesenchymal stromal cell carriers overrides melanoma resistance to an oncolytic adenovirus. Stem Cells Dev, 21(14): 2689–2702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruno S, Collino F, Deregibus M C, Grange C, Tetta C, Camussi G (2013). Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev, 22(5): 758–771

    Article  CAS  PubMed  Google Scholar 

  • Carrero R, Cerrada I, Lledó E, Dopazo J, García-García F, Rubio M P, Trigueros C, Dorronsoro A, Ruiz-Sauri A, Montero J A, Sepúlveda P (2012). IL1β induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-κB. Stem Cell Rev, 8(3): 905–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castleton A, Dey A, Beaton B, Patel B, Aucher A, Davis D M, Fielding A K (2014). Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood, 123(9): 1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Cavarretta I T, Altanerova V, Matuskova M, Kucerova L, Culig Z, Altaner C (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther, 18(1): 223–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaturvedi P, Gilkes D M, Wong C C, Luo W, Zhang H, Wei H, Takano N, Schito L, Levchenko A, Semenza G L, and the Kshitiz (2013). Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest, 123(1): 189–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen M Y, Lie P C, Li Z L, Wei X (2009). Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol, 37(5): 629–640

    Article  CAS  PubMed  Google Scholar 

  • De Boeck A, Pauwels P, Hensen K, Rummens J L, Westbroek W, Hendrix A, Maynard D, Denys H, Lambein K, Braems G, Gespach C, Bracke M, De Wever O (2013). Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut, 62(4): 550–560

    Article  PubMed  Google Scholar 

  • de Peppo G M, Marcos-Campos I, Kahler D J, Alsalman D, Shang L, Vunjak-Novakovic G, Marolt D (2013). Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci USA, 110(21): 8680–8685

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Stasi A, Tey S K, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett A G, Grilley B, Liu H, Cruz C R, Savoldo B, Gee A P, Schindler J, Krance R A, Heslop H E, Spencer D M, Rooney C M, Brenner M K (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med, 365(18): 1673–1683

    Article  PubMed Central  PubMed  Google Scholar 

  • Duchi S, Sotgiu G, Lucarelli E, Ballestri M, Dozza B, Santi S, Guerrini A, Dambruoso P, Giannini S, Donati D, Ferroni C, Varchi G (2013). Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma. J Control Release, 168(2): 225–237

    Article  CAS  PubMed  Google Scholar 

  • Dvorak H F (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med, 315(26): 1650–1659

    CAS  Google Scholar 

  • El-Haibi C P, Bell G W, Zhang J, Collmann A Y, Wood D, Scherber C M, Csizmadia E, Mariani O, Zhu C, Campagne A, Toner M, Bhatia S N, Irimia D, Vincent-Salomon A, Karnoub A E (2012). Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci USA, 109(43): 17460–17465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erler J T, Bennewith K L, Cox T R, Lang G, Bird D, Koong A, Le Q T, Giaccia A J (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1): 35–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • García-Castro J, Alemany R, Cascalló M, Martínez-Quintanilla J, Arriero M M, Lassaletta A, Madero L, Ramírez M (2010). Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther, 17(7): 476–483

    Article  PubMed  Google Scholar 

  • Goldenberg D M, Gold D V, Loo M, Liu D, Chang C H, Jaffe E S (2013). Horizontal transmission of malignancy: in-vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology. PLoS ONE, 8(2): e55324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, Scarabelli L, Bambi F, Frassoldati A, Rossi G, Casali C, Morandi U, Horwitz EM, Paolucci P, Conte P, Dominici M (2010). Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factorrelated apoptosis-inducing ligand delivery for cancer therapy. Cancer Res, 70(9): 3718–3729

    Article  CAS  PubMed  Google Scholar 

  • Ho I A, Toh H C, Ng W H, Teo Y L, Guo C M, Hui K M, Lam P Y (2013). Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells, 31(1): 146–155

    Article  CAS  PubMed  Google Scholar 

  • Hong H S, Lee J, Lee E, Kwon Y S, Lee E, Ahn W, Jiang MH, Kim J C, Son Y (2009). A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med, 15(4): 425–435

    Article  CAS  PubMed  Google Scholar 

  • Houghton J, Stoicov C, Nomura S, Rogers A B, Carlson J, Li H, Cai X, Fox J G, Goldenring J R, Wang T C (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306(5701): 1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Ip J E, Wu Y, Huang J, Zhang L, Pratt R E, Dzau V J (2007). Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell, 18(8): 2873–2882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen B M, Harrell J C, Jedlicka P, Borges V F, Varella-Garcia M, Horwitz K B (2006). Spontaneous fusion with, and transformation of mouse stroma by, malignant human breast cancer epithelium. Cancer Res, 66(16): 8274–8279

    Article  CAS  PubMed  Google Scholar 

  • Johann P D, Vaegler M, Gieseke F, Mang P, Armeanu-Ebinger S, Kluba T, Handgretinger R, Müller I (2010). Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer, 10(1): 501

    Article  PubMed Central  PubMed  Google Scholar 

  • Jung Y, Kim J K, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry J E, McGee S, Lee E, Sun H, Wang J, Jin T, Zhang H, Dai J, Krebsbach P H, Keller E T, Pienta K J, Taichman R S (2013). Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun, 4: 1795

    Article  PubMed Central  PubMed  Google Scholar 

  • Karnoub A E, Dash A B, Vo A P, Sullivan A, Brooks M W, Bell G W, Richardson A L, Polyak K, Tubo R, Weinberg R A (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162): 557–563

    Article  CAS  PubMed  Google Scholar 

  • Khakoo A Y, Pati S, Anderson S A, Reid W, Elshal M F, Rovira I I, Nguyen A T, Malide D, Combs C A, Hall G, Zhang J, Raffeld M, Rogers T B, Stetler-Stevenson W, Frank J A, Reitz M, Finkel T (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med, 203(5): 1235–1247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth E L, Watson K, Shi Y, Abbruzzese J, Konopleva M, Andreeff M, Marini F C (2010). Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy, 12(5): 615–625

    Article  CAS  PubMed  Google Scholar 

  • Kim S W, Kim S J, Park S H, Yang H G, Kang M C, Choi Y W, Kim S M, Jeun S S, Sung Y C (2013). Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res, 19(2): 415–427

    Article  CAS  PubMed  Google Scholar 

  • Kinnaird T, Stabile E, Burnett M S, Lee CW, Barr S, Fuchs S, Epstein S E (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res, 94(5): 678–685

    Article  CAS  PubMed  Google Scholar 

  • Kitadai Y, Sasaki T, Kuwai T, Nakamura T, Bucana C D, Hamilton S R, Fidler I J (2006). Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int J Cancer, 119(11): 2567–2574

    Article  CAS  PubMed  Google Scholar 

  • Kolluri, K.K., Laurent, G.J., and Janes, S.M. (2013). Mesenchymal stem cells as vectors for lung cancer therapy. Respiration; international review of thoracic diseases 85, 443–451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komlev V S, Mastrogiacomo M, Peyrin F, Cancedda R, Rustichelli F (2009). X-ray synchrotron radiation pseudo-holotomography as a new imaging technique to investigate angio- and microvasculogenesis with no usage of contrast agents. Tissue Eng Part C Methods, 15(3): 425–430

    Article  CAS  PubMed  Google Scholar 

  • Kraman M, Bambrough P J, Arnold J N, Roberts EW, Magiera L, Jones J O, Gopinathan A, Tuveson D A, Fearon D T (2010). Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science, 330(6005): 827–830

    Article  CAS  PubMed  Google Scholar 

  • Krausgrill B, Vantler M, Burst V, Raths M, Halbach M, Frank K, Schynkowski S, Schenk K, Hescheler J, Rosenkranz S, Müller-Ehmsen J (2009). Influence of cell treatment with PDGF-BB and reperfusion on cardiac persistence of mononuclear and mesenchymal bone marrow cells after transplantation into acute myocardial infarction in rats. Cell Transplant, 18(8): 847–853

    Article  PubMed  Google Scholar 

  • Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007). Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res, 67(13): 6304–6313

    Article  CAS  PubMed  Google Scholar 

  • Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R, Altanerova V, Altaner C (2008). Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med, 10(10): 1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Larson B L, Ylostalo J, Lee R H, Gregory C, Prockop D J (2010). Sox11 is expressed in early progenitor human multipotent stromal cells and decreases with extensive expansion of the cells. Tissue Eng Part A, 16(11): 3385–3394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lazova R, Laberge G S, Duvall E, Spoelstra N, Klump V, Sznol M, Cooper D, Spritz R A, Chang J T, Pawelek J M (2013). A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PLoS ONE, 8(6): e66731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee R H, Pulin A A, Seo M J, Kota D J, Ylostalo J, Larson B L, Semprun-Prieto L, Delafontaine P, Prockop D J (2009a). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1): 54–63

    Article  CAS  PubMed  Google Scholar 

  • Lee R H, Seo M J, Pulin A A, Gregory C A, Ylostalo J, Prockop D J (2009b). The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood, 113(4): 816–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee R H, Yoon N, Reneau J C, Prockop D J (2012). Preactivation of human MSCs with TNF-α enhances tumor-suppressive activity. Cell Stem Cell, 11(6): 825–835

    Article  CAS  PubMed  Google Scholar 

  • Lesley J, Gál I, Mahoney D J, Cordell MR, Rugg MS, Hyman R, Day A J, Mikecz K (2004). TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J Biol Chem, 279(24): 25745–25754

    Article  CAS  PubMed  Google Scholar 

  • Li H J, Reinhardt F, Herschman H R, Weinberg R A (2012). Cancerstimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov, 2(9): 840–855

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Ma H, Ding Z, Shi W, Qian W, Song J, Hou X (2013). Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer. Stem Cells Dev, 22(21): 2836–2848

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Ginestier C, Ou S J, Clouthier S G, Patel S H, Monville F, Korkaya H, Heath A, Dutcher J, Kleer C G, Jung Y, Dontu G, Taichman R, Wicha M S (2011a). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res, 71(2): 614–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Han Z P, Zhang S S, Jing Y Y, Bu X X, Wang C Y, Sun K, Jiang G C, Zhao X, Li R, Gao L, Zhao Q D, Wu M C, Wei L X (2011b). Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem, 286(28): 25007–25015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loebinger M R, Eddaoudi A, Davies D, Janes S M (2009). Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res, 69(10): 4134–4142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loebinger M R, Janes S M (2010). Stem cells as vectors for antitumour therapy. Thorax, 65(4): 362–369

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu Y R, Yuan Y, Wang X J, Wei L L, Chen Y N, Cong C, Li S F, Long D, Tan W D, Mao Y Q, Zhang J, Li Y P, Cheng J Q (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther, 7(2): 245–251

    Article  CAS  PubMed  Google Scholar 

  • Mader E K, Maeyama Y, Lin Y, Butler G W, Russell H M, Galanis E, Russell S J, Dietz A B, Peng K W (2009). Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res, 15(23): 7246–7255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Quintanilla J, Bhere D, Heidari P, He D, Mahmood U, Shah K (2013). Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells, 31(8): 1706–1714

    Article  CAS  PubMed  Google Scholar 

  • Marx J (2008). Cancer biology. All in the stroma: cancer’s Cosa Nostra. Science, 320(5872): 38–41

    CAS  Google Scholar 

  • Matuskova M, Hlubinova K, Pastorakova A, Hunakova L, Altanerova V, Altaner C, Kucerova L (2010). HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett, 290(1): 58–67

    Article  CAS  PubMed  Google Scholar 

  • Mi Z, Bhattacharya S D, Kim V M, Guo H, Talbot L J, Kuo P C (2011). Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis, 32(4): 477–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mi Z, Guo H, Russell MB, Liu Y, Sullenger B A, Kuo P C (2009). RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol Ther, 17(1): 153–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra P J, Mishra P J, Humeniuk R, Medina D J, Alexe G, Mesirov J P, Ganesan S, Glod J W, Banerjee D (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res, 68(11): 4331–4339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, Boutarfa A, Bouchet S, Gorin N C, Thierry D, Fouillard L (2007). Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation, 84(2): 231–237

    Article  CAS  PubMed  Google Scholar 

  • Patel S A, Meyer J R, Greco S J, Corcoran K E, Bryan M, Rameshwar P (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol, 184(10): 5885–5894

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia B A, Callahan MK, Yuan J, Martins V R, Skog J, Kaplan R N, Brady MS, Wolchok J D, Chapman P B, Kang Y, Bromberg J, Lyden D (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med, 18(6): 883–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peter M E (2009). Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6): 843–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiao L, Xu Z L, Zhao T J, Ye L H, Zhang X D (2008). Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett, 269(1): 67–77

    Article  CAS  PubMed  Google Scholar 

  • Quante M, Tu S P, Tomita H, Gonda T, Wang S S, Takashi S, Baik G H, Shibata W, Diprete B, Betz K S, Friedman R, Varro A, Tycko B, Wang T C (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19(2): 257–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rappa G, Mercapide J, Lorico A (2012). Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol, 180(6): 2504–2515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren C, Kumar S, Chanda D, Chen J, Mountz J D, Ponnazhagan S (2008a). Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells, 26(9): 2332–2338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz J D, Ponnazhagan S (2008b). Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther, 15(21): 1446–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sage E K, Kolluri K K, McNulty K, Lourenco S D, Kalber T L, Ordidge K L, Davies D, Gary Lee Y C, Giangreco A, Janes S M (2014). Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma. Thorax, Sánchez L, Gutierrez-Aranda I, Ligero G, Rubio R, Muñoz-López M, García-Pérez J L, Ramos V, Real P J, Bueno C, Rodríguez R, Delgado M, Menendez P (2011). Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells, 29(2): 251–262

    Google Scholar 

  • Sasportas L S, Kasmieh R, Wakimoto H, Hingtgen S, van de Water J A, Mohapatra G, Figueiredo J L, Martuza R L, Weissleder R, Shah K (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA, 106(12): 4822–4827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seo KW, Lee HW, Oh Y I, Ahn J O, Koh Y R, Oh S H, Kang S K, Youn H Y (2011a). Anti-tumor effects of canine adipose tissue-derived mesenchymal stromal cell-based interferon-β gene therapy and cisplatin in a mouse melanoma model. Cytotherapy, 13(8): 944–955

    Article  CAS  PubMed  Google Scholar 

  • Seo S H, Kim K S, Park S H, Suh Y S, Kim S J, Jeun S S, Sung Y C (2011b). The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther, 18(5): 488–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z, Liu F (2012). Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells, 30(12): 2810–2819

    Article  PubMed  Google Scholar 

  • Shimoda M, Mellody K T, Orimo A (2010). Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol, 21(1): 19–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Onoyama M, Ohnishi M, Ohara E, Higashi Y, Tanaka S, Yasui W, Chayama K (2013). Stromadirected imatinib therapy impairs the tumor-promoting effect of bone marrow-derived mesenchymal stem cells in an orthotopic transplantation model of colon cancer. Int J Cancer, 132(4): 813–823

    Article  CAS  PubMed  Google Scholar 

  • Song C, Li G (2011). CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors. Cytotherapy, 13(5): 549–561

    Article  CAS  PubMed  Google Scholar 

  • Spaeth E L, Labaff A M, Toole B P, Klopp A, Andreeff M, Marini F C (2013). Mesenchymal CD44 expression contributes to the acquisition of an activated fibroblast phenotype via TWIST activation in the tumor microenvironment. Cancer Res, 73(17): 5347–5359

    Article  CAS  PubMed  Google Scholar 

  • Stroncek D, Berlyne D, Fox B, Gee A, Heimfeld S, Lindblad R, Loper K, McKenna D Jr, Rooney C, Sabatino M, Wagner E, Whiteside T, Wood D, Heath-Mondoro T (2010). Developments in clinical cell therapy. Cytotherapy, 12(3): 425–428

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S, Saijo Y (2011). Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med, 17(7–8): 579–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokar E J, Diwan B A, Waalkes M P (2010). Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stemlike phenotype. Environ Health Perspect, 118(1): 108–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toledano Furman N E, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, Baruch L, Machluf M (2013). Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett, 13(7): 3248–3255

    Article  CAS  PubMed  Google Scholar 

  • Uchibori R, Okada T, Ito T, Urabe M, Mizukami H, Kume A, Ozawa K (2009). Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med, 11(5): 373–381

    Article  CAS  PubMed  Google Scholar 

  • Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, Ruiz i Altaba A (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med, 1(6–7): 338–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Viswanathan S, Keating A, Deans R, Hematti P, Prockop D, Stroncek D F, Stacey G, Weiss D J, Mason C, Rao M S (2014). Soliciting Strategies for Developing Cell-Based Reference Materials to Advance MSC Research and Clinical Translation. Stem Cells Dev: 140310064908006

  • Wang M L, Pan C M, Chiou S H, Chen W H, Chang H Y, Lee O K, Hsu H S, Wu C W (2012). Oncostatin m modulates the mesenchymalepithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res, 72(22): 6051–6064

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Ju G Q, Du T, Zhu Y J, Liu G H (2013). Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS ONE, 8(4): e61366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Zhou B P (2010). Snail: More than EMT. Cell Adhes Migr, 4(2): 199–203

    Article  Google Scholar 

  • Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T, Saijo Y (2007). Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells, 25(7): 1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Xu MH, Gao X, Luo D, Zhou X D, Xiong W, Liu G X (2014). EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells. PLoS ONE, 9(2): e87893

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I (2012). Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells, 30(2): 266–279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Liu, F. Mesenchymal stem cells in progression and treatment of cancers. Front. Biol. 9, 186–194 (2014). https://doi.org/10.1007/s11515-014-1306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1306-2

Keywords

Navigation