Skip to main content
Log in

Effect of the Interaction Between Cadmium Exposure and CLOCK Gene Polymorphisms on Thyroid Cancer: a Case-Control Study in China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The exposure to endocrine disruptors and the disruption of the circadian rhythms can both affect thyroid hormones, with results that are most likely carcinogenic in humans. The effects of cadmium (Cd) level and circadian-related single-nucleotide polymorphisms (SNPs) on thyroid cancer (TC) risk have rarely been reported. In this study, the associations of urine Cd, CLOCK gene polymorphisms, and TC risk were evaluated, in addition to the effect of the gene–environment interaction on TC risk. In this case-control study, 218 TC cases and 218 controls were enrolled. Cd in urinary samples was determined by atomic absorption spectrometry. Three SNPs (rs3805151, rs3805154, and rs78929565) were genotyped with an improved multiplex ligation detection reaction technique. The individuals with a high Cd level were 1.72-fold more likely to have TC (OR = 1.72, 95%CI 1.04–2.85), and a high Cd level was associated with higher tumor T stage and N stage (OR = 2.42, 95%CI 1.28–4.58; OR = 3.26, 95%CI 1.67–6.33, respectively). Individuals with TT genotype of rs78929565 had a 107 % increase in TC risk (OR = 2.07, 95%CI 1.00–4.29). Cases with CT genotype tended to have a higher AJCC stage (OR = 2.79, 95% CI 1.01–7.78). A significant interaction was detected between the rs78929565 variant and Cd exposure (p interaction = 0.04). The TT genotype carriers of rs78929565 with a high Cd level were more susceptible to thyroid cancer than the major homozygotes carriers who were exposed to a low cadmium level (OR = 2.66, 95%CI 1.07–6.59). These findings suggested that Cd exposure and the CLOCK variant genotypes were associated with TC risk and tumor severity. Individuals with minor allele of rs78929565 and higher Cd exposure had increased susceptibility to TC. Further studies are required to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ho AS, Davies L, Nixon IJ et al (2015) Increasing diagnosis of subclinical thyroid cancers leads to spurious improvements in survival rates. Cancer 121(11):1793–1799

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA-Cancer J Clin 66(2):115–132

    Article  PubMed  Google Scholar 

  3. Kitahara CM, Sosa JA (2016) The changing incidence of thyroid cancer. Nat Rev Endocrinol 12(11):646-653

  4. Zoeller RT, Tan SW, Tyl RW (2007) General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol 37(1-2):43

    Google Scholar 

  5. Jancic SA, Stosic BZ (2014) Cadmium effects on the thyroid gland. Vitam Horm 94:391–425

    Article  CAS  PubMed  Google Scholar 

  6. Chen A, Kim SS, Chung E et al (2013) Thyroid hormones in relation to lead, mercury, and cadmium exposure in the National Health and Nutrition Examination Survey, 2007-2008. Environ Health Perspect 121(2):181–186

    Article  CAS  PubMed  Google Scholar 

  7. Nie X, Chen Y, Chen Y et al (2017) Lead and cadmium exposure, higher thyroid antibodies and thyroid dysfunction in Chinese women. Environ Pollut 230:320–328

    Article  CAS  PubMed  Google Scholar 

  8. Aleksandra B, Vesna M, Biljana A et al (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19(5):1501

    Article  CAS  Google Scholar 

  9. Huang H, Rusiecki J, Zhao N et al (2017) Thyroid-stimulating hormone, thyroid hormones and risk of papillary thyroid cancer: a nested case-control study. Cancer Epidemiol Biomark 26(8):1209–1218

    Article  CAS  Google Scholar 

  10. Liang L, Zheng XC, Hu MJ, et al (2018) Association of benign thyroid diseases with thyroid cancer risk: a meta-analysis of prospective observational studies. J Endocrinol Investig 42(1):673-685

  11. Vigneri R, Malandrino P, Gianì F et al (2017) Heavy metals in the volcanic environment and thyroid cancer. Mol Cell Endocrinol 457:73–80

    Article  CAS  PubMed  Google Scholar 

  12. Chung HK, Nam JS, Ahn CW et al (2015) Some elements in thyroid tissue are associated with more advanced stage of thyroid cancer in Korean women. Biol Trace Elem Res 171(1):1–9

    Google Scholar 

  13. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  CAS  PubMed  Google Scholar 

  14. Dibner C, Sadowski SM, Triponez F et al (2017) The search for preoperative biomarkers for thyroid carcinoma: application of the thyroid circadian clock properties. Biomark Med 11(3):285–293

    Article  CAS  PubMed  Google Scholar 

  15. Behrens T, Rabstein S, Wichert K et al (2017) Shift work and the incidence of prostate cancer: a 10-year follow-up of a German population-based cohort study. Scand J Work Environ Health 43(6):560–568

    PubMed  Google Scholar 

  16. Zhu Y, Stevens RG, Hoffman AE et al (2009) Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Res 69(24):9315–9322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Truong T, Liquet B, Menegaux F et al (2014) Breast cancer risk, night work and circadian clock gene polymorphisms. Endocr Relat Cancer 21(4):629–638

    Article  CAS  PubMed  Google Scholar 

  18. Grau-Perez M, Pichler G, Galan-Chilet I et al (2017) Urine cadmium levels and albuminuria in a general population from Spain: a gene-environment interaction analysis. Environ Int 106:27–36

    Article  CAS  PubMed  Google Scholar 

  19. Menke A, Muntner P, Silbergeld EK et al (2009) Cadmium levels in urine and mortality among U.S. adults. Environ Health Perspect 117(2):190–196

    Article  CAS  PubMed  Google Scholar 

  20. Kwon CS, Kountouri AM, Mayer C et al (2007) Mononuclear cell metallothionein mRNA levels in human subjects with poor zinc nutrition. Br J Nutr 97(2):247–254

    Article  CAS  PubMed  Google Scholar 

  21. Siewit CL, Gengler B, Vegas E et al (2010) Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERα and c-Jun. Mol Endocrinol 24:981–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vannucchi G, De LS, Perrino M et al (2015) Impact of estrogen and progesterone receptor expression on the clinical and molecular features of papillary thyroid cancer. Eur J Endocrinol 173:29–36

    Article  CAS  PubMed  Google Scholar 

  23. Vivacqua A, Bonofiglio D, Albanito L (2006) 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol 70:1414–1423

    Article  CAS  PubMed  Google Scholar 

  24. Zhu P, Liao LY, Zhao TT et al (2017) GPER/ERK&AKT/NF-κB pathway is involved in cadmium-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Mol Cell Endocrinol 442:68–80

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Liu Y, Kong D et al (2016) T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc. Environ Sci Pollut Res Int 23(10):9843–9851

    Article  CAS  PubMed  Google Scholar 

  26. Liu ZM, Chen GG, Shum CKY et al (2007) Induction of functional MT1 and MT2 isoforms by calcium in anaplastic thyroid carcinoma cells. FEBS Lett 581(13):2465–2472

    Article  CAS  PubMed  Google Scholar 

  27. Lane D (2004) Curing cancer with p53. N Engl J Med 350(26):2711–2712

    Article  CAS  PubMed  Google Scholar 

  28. Liu ZM, Chen GG, Vlantis AC et al (2007) Calcium-mediated activation of PI3K and p53 leads to apoptosis in thyroid carcinoma cells. Cell Mol Life Sci 64(11):1428–1436

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz GG, Reis IM (2000) Is cadmium a cause of human pancreatic cancer? Cancer Epidemiol Biomark 9(2):139–145

    CAS  Google Scholar 

  30. Yoshizuka M, Mori N, Hamasaki K et al (1991) Cadmium toxicity in the thyroid gland of pregnant rats. Exp Mol Pathol 55(1):97–104

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aleksandra B, David W, Vesna M et al (2017) Cadmium exposure as a putative risk factor for the development of pancreatic cancer: three different lines of evidence. Bio Med Res Int 2017:1–8

    Google Scholar 

  33. Hudson J, Duncavage E, Tamburrino A et al (2013) Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol 95(1):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eze OP, Starker LF, Carling T (2011) The Role of Epigenetic Alterations in Papillary Thyroid Carcinogenesis. J Thyroid Res 2011(6):895470

  35. Sancar A, Lindsey-Boltz LA, Kang TH et al (2010) Circadian clock control of the cellular response to DNA damage. FEBS Lett 584(12):2618–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai H, Zhang L, Cao M et al (2011) The role of polymorphisms in circadian pathway genes in breast tumorigenesis. Breast Cancer Res Treat 127(2):531–540

    Article  CAS  PubMed  Google Scholar 

  37. Hunt T, Sassone-Corsi P (2007) Riding tandem: circadian clocks and the cell cycle. Cell 129(3):0–464

    Article  CAS  Google Scholar 

  38. Chang H, Dongliang L, Feng Z (2016) Expression of CLOCK gene in papillary thyroid carcinoma tissues and its significance. Anhui Med J 37(3):269–272

    Google Scholar 

  39. Dong-Liang L, Ming H, Feng Z (2017) Expression and role of CLOCK gene in thyroid carcinoma and thyroid adenoma. Chin J Gen Pract 15(10):1675–1677

    Google Scholar 

  40. Miller BH, Mcdearmon EL, Panda S et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104(9):3342–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lévi F, Okyar A, Dulong S et al (2010) Circadian timing in cancer treatments. Annu Rev Pharmacol 50(1):377–421

    Article  CAS  Google Scholar 

  42. Dang F, Sun X, Ma X et al (2016) Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat Commun 7:12696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mannic T, Meyer P, Triponez F et al (2013) Circadian clock characteristics are altered in human thyroid malignant nodules. J Clin Endocrinol Metab 98(11):4446–4456

    Article  CAS  PubMed  Google Scholar 

  44. Jiménez-Ortega V, Cardinali DP, Fernández-Mateos MP et al (2010) Effect of cadmium on 24-hour pattern in expression of redox enzyme and clock genes in rat medial basal hypothalamus. Biometals 23(2):327–337

    Article  CAS  PubMed  Google Scholar 

  45. Xiao B, Chen TM, Zhong Y (2016) Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish. Biochem Biophys Res Commun 481(3-4):201–205

    Article  CAS  PubMed  Google Scholar 

  46. Philippe J, Dibner C (2015) Thyroid circadian timing: roles in physiology and thyroid malignancies. J Biol Rhythm 30(2):76–83

    Article  CAS  Google Scholar 

  47. Agency for toxic substances and disease registry (ATSDR), U.S. Public Health Service (2012) Toxicological profile for cadmium. U.S. Department of Health and Human Services, Atlanta, pp 1–487

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the subjects who participated in this research.

Funding

This work was supported by the Academic Aid Project for Top Talents (Professionals) in Colleges and Universities of Anhui Province (gxbjZD09) and the Project for Anhui Province Academic Technology Leader Reserve Candidates’ Academic Research Activities (2017H108).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: Qian Zhang and Fen Huang. Acquisition of data: Qian Zhang, Huabing Wu. Analysis of data: Qian Zhang, Chunxiao Jiang and Haibo Li. Drafting and critical review of manuscript: Qian Zhang, Chunxiao Jiang, and Fen Huang

Corresponding author

Correspondence to Fen Huang.

Ethics declarations

The present study was approved by the Anhui Medical University biomedical ethics committee. All subjects had written an informed consent form before participating in this study.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(PDF 64 kb)

Table S2

(PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Jiang, C., Li, H. et al. Effect of the Interaction Between Cadmium Exposure and CLOCK Gene Polymorphisms on Thyroid Cancer: a Case-Control Study in China. Biol Trace Elem Res 196, 86–95 (2020). https://doi.org/10.1007/s12011-019-01904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01904-2

Keywords

Navigation