Skip to main content
Log in

T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose–response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10−5, 3.2 × 10−6, and 1.2 × 10−6 mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10−6 to 10−4 mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali I, Penttinen-Damdimopoulou PE, Mäkelä SI, Berglund M, Stenius U, Akesson A, Håkansson H, Halldin K (2010) Estrogen-like effects of cadmium in vivo do not appear to be mediated via the classical estrogen receptor transcriptional pathway. Environ Health Perspect 118:1389–1394. doi:10.1289/ehp.1001967

    Article  CAS  Google Scholar 

  • Berg J (1990) Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 265:6513–6516

    CAS  Google Scholar 

  • Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355:240–248. doi:10.1016/j.mce.2011.09.005

    Article  CAS  Google Scholar 

  • Buha A, Antonijevic B, Bulat Z, Jacevic V, Milovanovic V, Matovic V (2013) The impact of prolonged cadmium exposure and co-exposure with polychlorinated biphenyls on thyroid function in rats. Toxicol Lett 221:83–90. doi:10.1016/j.toxlet.2013.06.216

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Freake HC (1998) Zinc chelation enhances thyroid hormone induction of growth hormone mRNA in GH3 cells. Mol Cell Endocrinol 136:151–157. doi:10.1016/S0303-7207(97)00228-1

    Article  CAS  Google Scholar 

  • Curčić M, Jankovic S, Jacevic V, Stankovic S, Vucinic S, Durgo K, Bulat Z, Antoni-jevic B (2012) Combined effects of cadmium and decabrominated diphenylether on thyroid hormones in rats. Arh Hig Rada Toksikol 63:255–262. doi:10.2478/10004-1254-63-2012-2179

    Google Scholar 

  • Denier X, Hill EM, Rotchell J, Minier C (2009) Estrogenic activity of cadmium, copper and zinc in the yeast estrogen screen. Toxicol In Vitro 23:569–573. doi:10.1016/j.tiv.2009.01.006

    Article  CAS  Google Scholar 

  • Dundar B, Oktem F, Arslan KM, Delibas N, Baykal B, Arslan C, Gultepe M, Ilhan EI (2006) The effect of long-term low-dose lead exposure on thyroid function in adolescents. Environ Res 101:140–145. doi:10.1016/j.envres.2005.10.002

    Article  CAS  Google Scholar 

  • Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD, Murk AJ (2011) Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In Vitro 25:257–266. doi:10.1016/j.tiv.2010.08.013

    Article  CAS  Google Scholar 

  • Fu J, Zhao C, Luo Y, Liu C, Kyzase GZ, Luo Y, Zhao D, An S, Zhu H (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109. doi:10.1016/j.jhazmat.2014.01.044

    Article  CAS  Google Scholar 

  • Goyer RA, Klaassen CD, Waalks MP (1995) Metal toxicology. Academic, San Diego, pp 21–36

    Book  Google Scholar 

  • Gupta P, Kar A (1999) Cadmium induced thyroid dysfunction in chicken: hepatic type I iodothyronine 5%-monodeiodinase activity and role of lipid peroxidation. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123:39–44. doi:10.1016/S0742-8413(99)00007-9

    Article  CAS  Google Scholar 

  • Gupta P, Chaurasia SS, Kar A, Maiti PK (1997) Influence of cadmium on thyroid hormone concentrations and lipid peroxidation in a fresh water fish, Clarias batrachus. Fresen Environ Bull 6:355–358

    CAS  Google Scholar 

  • Gutleb AC, Meerts IA, Schriks M, Murk AJ (2005) T-Screen as a tool to identify thyroid hormone receptor active compounds. Environ Toxicol Pharmacol 19:231–238. doi:10.1016/j.etap.2004.06.003

    Article  CAS  Google Scholar 

  • Hammouda F, Messaoudi I, El Hani J, Baati T, Saïd K, Kerkeni A (2008) Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combinationin rat. Biol Trace Elem Res 126:194–203. doi:10.1007/s12011-008-8194-8

    Article  CAS  Google Scholar 

  • Hohenwarter O, Waltenberger A, Katinger H (1996) An in vitro test system for thyroid hormone action. Anal Biochem 234:56–59. doi:10.1006/abio.1996.0049

    Article  CAS  Google Scholar 

  • Isidori M, Cangiano M, Palerma A (2010) E-screen and vitellogenin assay for the detection of the estrogenic activity of alkylphenols and trace elements. Comp Biochem Physiol C Toxicol Pharmacol 152:51–56. doi:10.1016/j.cbpc.2010.02.011

    Article  Google Scholar 

  • Kosta L, Byrne AR, Zelenko V (1975) Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254:238–239. doi:10.1038/254238a0

    Article  CAS  Google Scholar 

  • Li J, Ma M, Wang Z (2008) A two-hybrid yeast assay to quantify the effects of xenobiotics on thyroid hormone-mediated gene expression. Environ Toxicol Chem 27:159–167. doi:10.1897/07-054.1

    Article  CAS  Google Scholar 

  • Li J, Wang Z, Ma M, Peng X (2010) Analysis of environmental endocrine disrupting activities using recombinant yeast assay in wastewater treatment plant effluents. Bull Environ Contam Toxicol 84:529–535. doi:10.1007/s00128-010-0004-2

    Article  CAS  Google Scholar 

  • Li J, Ren SJ, Han SL, Li N (2014) A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization. Chemosphere 100:139–145. doi:10.1016/j.chemosphere.2013.11.054

    Article  CAS  Google Scholar 

  • Lukaski HC, Hall CB, Marchello MJ (1995) Body temperature and thyroid hormone metabolism of copper-deficient rats. J Nutr Biochem 6:445–451. doi:10.1016/0955-2863(95)00062-5

    Article  CAS  Google Scholar 

  • Martins VV, Zanetti MO, Pitondo-Silva A, Stehling EG (2014) Aquatic environments polluted with antibiotics and heavy metals: a human health hazard. Environ Sci Pollut Res Int 21:5873–5878. doi:10.1007/s11356-014-2509-4

    Article  CAS  Google Scholar 

  • Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MM, Furlow JD, Kavlock R, Kohrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC (2013) Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 27:1320–1346. doi:10.1016/j.tiv.2013.02.012

    Article  CAS  Google Scholar 

  • Norman MF, Lavin TN (1989) Antagonism of thyroid hormone action by amiodarone in rat pituitary tumor cells. J Clin Invest 83:306–313. doi:10.1172/JCI113874

    Article  CAS  Google Scholar 

  • Rehmann RK, Schramm KW, Kettrup AA (1999) Applicability of a yeast oestrogen screen for the detection of oestrogen-like activities in environmental samples. Chemophere 38:3303–3312. doi:10.1016/S0045-6535(98)00562-1

    Article  CAS  Google Scholar 

  • Schriks M, Vrabie CM, Gutleb AC, Faassen EJ, Rietjens IM, Murk AJ (2006) T-screen to quantify functional potentiating, antagonistic and thyroid hormone-like activities of poly halogenated aromatic hydrocarbons (PHAHs). Toxicol In Vitro 20:490–498. doi:10.1016/j.tiv.2005.09.001

    Article  CAS  Google Scholar 

  • Sciaudone MP, Chattopadhyay S, Freake HC (2000) Chelation of zinc amplifies induction of growth hormone mRNA levels in cultured rat pituitary tumor cells. J Nutr 130:158–163

    CAS  Google Scholar 

  • Shi X, Liu C, Wu G, Zhou B (2009) Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae. Chemosphere 77:1010–1018. doi:10.1016/j.chemosphere.2009.07.074

    Article  CAS  Google Scholar 

  • Shiue I (2015) Urinary heavy metals, phthalates and polyaromatic hydrocarbons independent of health events are associated with adult depression: USA NHANES, 2011–2012. Environ Sci Pollut Res Int 22:17095–17103. doi:10.1007/s11356-015-4944-2

    Article  CAS  Google Scholar 

  • Sin YM, Teh WF, Wong MK, Reddy PK (1990) Effect of mercury on glutathione and thyroid hormones. Bull Environ Contain Toxicol 44:616–622

    Article  CAS  Google Scholar 

  • Sirbasku DA, Pakala R, Sato H, Eby JE (1991) Thyroid hormone dependent pituitary tumor cell growth in serum-free chemically defined culture. A new regulatory role for apotransferrin. Biochem 30:7466–7477. doi:10.1021/bi00244a015

    Article  CAS  Google Scholar 

  • Surks MI, Ramirez IJ, Shapiro LE, Kumara-Siri M (1989) Effect of zinc (II) and other divalent cations on binding of 3,5,3′-triiodo-L-thyronine to nuclear receptors from cultured GC cells. J Biol Chem 264:9820–9826

    CAS  Google Scholar 

  • Wada L, King JC (1986) Effect of low zinc intakes on basal metabolic rate, thyroid hormones and protein utilization in adult men. J Nutr 116:1045–1053

    CAS  Google Scholar 

  • Yaman M, Kaya G, Yekeler H (2007) Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues. World J Gastroenterol 13:612–618

    Article  CAS  Google Scholar 

  • Yen PM, Ando S, Feng X, Liu Y, Maruvanda P, Xia X (2006) Thyroid hormone action at the cellular, genomic and target gene levels. Mol Cell Endocrinol 246:121–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41001351), the Fundamental Research Funds for the Central Universities (2012LYB35), and the Major Science and Technology Program for Water Pollution Control and Treatment (2014ZX07201-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 78.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, Y., Kong, D. et al. T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc. Environ Sci Pollut Res 23, 9843–9851 (2016). https://doi.org/10.1007/s11356-016-6095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6095-5

Keywords

Navigation