Skip to main content

Advertisement

Log in

The role of polymorphisms in circadian pathway genes in breast tumorigenesis

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Disruption of the circadian rhythm or biological clock, which is regulated by a number of clock genes, including circadian locomotor output cycles kaput (CLOCK), period genes (PERs), and cryptochrome genes (CRYs), is a risk factor for breast cancer. We hypothesized that genetic variation in these clock genes may influence breast cancer risk. To test this hypothesis, we designed a hospital-based study that included 1,538 breast cancer patients and 1,605 healthy controls. We genotyped subjects for five single nucleotide polymorphisms (SNPs) and a length variant of the circadian clock genes and evaluated their associations with breast cancer risk. These polymorphisms were determined by TaqMan allelic discrimination assays and the polymerase chain reaction-restriction fragment length polymorphism method. Univariate logistic regression analysis showed that polymorphisms of the CLOCK and CRY1 genes were associated with breast cancer risk. We found that carriers of the CLOCK CT and combined CT+TT genotypes had a significantly higher risk of breast cancer than carriers of the CC genotype (aOR = 1.35, 95% CI = 1.12-1.63 and aOR = 1.30, 95% CI = 1.09–1.56, respectively). Carriers of the CRY1 GT genotype had a decreased risk of breast cancer (aOR = 0.84, 95% CI = 0.71–0.99). We also observed a lower risk of breast cancer in carriers of the CRY2 CC genotype who were ER-positive than in those who were ER-negative (OR = 0.15, 95% CI = 0.04–0.67). When stratified by the CLOCK genotype, patients with the CLOCK CT/ CRY2 CC genotypes had significantly lower cancer risk than those with the GG genotype (aOR = 0.36, 95% CI = 0.14–0.95). Individuals carrying both the CLOCK CC and PER2 AA genotypes had an increased cancer risk (aOR = 2.28, 95% CI = 1.22–4.26). Our study suggests that genetic variants of the circadian rhythm regulatory pathway genes contribute to the differential risk of developing breast cancer in Chinese populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CLOCK:

Circadian locomotor output cycles kaput

BMAL1:

Brain and muscle ARNT-like1

SNPs:

Single nucleotide polymorphisms

RFLP:

Restriction fragment length polymorphism

PCR:

Polymerase chain reaction

aORs:

Adjusted odds ratios

CIs:

Confidence intervals

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108. doi:10.3322/canjclin.55.2.74

    Article  PubMed  Google Scholar 

  2. Linos E, Spanos D, Rosner BA et al (2008) Effects of reproductive and demographic changes on breast cancer incidence in China: a modeling analysis. J Natl Cancer Inst 100:1352–1360. doi:10.1093/jnci/djn305

    Article  PubMed  Google Scholar 

  3. Burch JB, Walling M, Rush A et al (2007) Melatonin and estrogen in breast cyst fluids. Breast Cancer Res Treat 103:331–341. doi:10.1007/s10549-006-9372-z

    Article  PubMed  CAS  Google Scholar 

  4. Hankinson SE, Eliassen AH (2007) Endogenous estrogen, testosterone and progesterone levels in relation to breast cancer risk. J Steroid Biochem Mol Biol 106:24–30. doi:10.1016/j.jsbmb.2007.05.012

    Article  PubMed  CAS  Google Scholar 

  5. Yu H, Shu XO, Li BD et al (2003) Joint effect of insulin-like growth factors and sex steroids on breast cancer risk. Cancer Epidemiol Biomarkers Prev 12:1067–1073

    PubMed  CAS  Google Scholar 

  6. Ravdin PM, Cronin KA, Howlader N et al (2007) The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med 356:1670–1674. doi:10.1056/NEJMsr070105

    Article  PubMed  CAS  Google Scholar 

  7. Kubo T, Ozasa K, Mikami K et al (2006) Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. Am J Epidemiol 164:549–555. doi:10.1093/aje/kwj232

    Article  PubMed  Google Scholar 

  8. Viswanathan AN, Hankinson SE, Schernhammer ES (2007) Night shift work and the risk of endometrial cancer. Cancer Res 67:10618–10622. doi:10.1158/0008-5472.CAN-07-2485

    Article  PubMed  CAS  Google Scholar 

  9. Schernhammer ES, Laden F, Speizer FE et al (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828

    Article  PubMed  Google Scholar 

  10. Schernhammer ES, Kroenke CH, Laden F et al (2006) Night work and risk of breast cancer. Epidemiology 17:108–111. doi:10.1097/01.ede.0000190539.03500.c1

    Article  PubMed  Google Scholar 

  11. Maemura K, Takeda N, Nagai R (2007) Circadian rhythms in the CNS and peripheral clock disorders: role of the biological clock in cardiovascular diseases. J Pharmacol Sci 103:134–138. doi:10.1254/jphs.FMJ06003X2

    Article  PubMed  CAS  Google Scholar 

  12. Knutsson A (2003) Health disorders of shift workers. Occup Med (Lond) 53:103–108. doi:10.1093/occmed/kqg048

    Article  Google Scholar 

  13. Costa G (2003) Shift work and occupational medicine: an overview. Occup Med (Lond) 53:83–88. doi:10.1093/occmed/kqg045

    Article  Google Scholar 

  14. Stevens RG (1987) Electric power use and breast cancer: a hypothesis. Am J Epidemiol 125:556–561

    PubMed  CAS  Google Scholar 

  15. Albrecht U (2002) Invited review: regulation of mammalian circadian clock genes. J Appl Physiol 92:1348–1355. doi:10.1152/japplphysiol.00759.2001

    PubMed  CAS  Google Scholar 

  16. Ueda HR, Hayashi S, Chen W et al (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192. doi:10.1038/ng1504

    Article  PubMed  CAS  Google Scholar 

  17. Delaunay F, Laudet V (2002) Circadian clock and microarrays: mammalian genome gets rhythm. Trends Genet 18:595–597. doi:10.1016/S0168-9525(02)02794-4

    Article  PubMed  CAS  Google Scholar 

  18. Canaple L, Kakizawa T, Laudet V (2003) The days and nights of cancer cells. Cancer Res 63:7545–7552

    PubMed  CAS  Google Scholar 

  19. Zhu Y, Brown HN, Zhang Y et al (2005) Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Biomarkers Prev 14:268–270

    PubMed  CAS  Google Scholar 

  20. Hoffman AE, Yi CH, Zheng T et al (2010) CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses. Cancer Res 70:1459–1468. doi:10.1158/0008-5472.CAN-09-3798

    Article  PubMed  CAS  Google Scholar 

  21. Zhu Y, Stevens RG, Leaderer D et al (2008) Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat 107:421–425. doi:10.1007/s10549-007-9565-0

    Article  PubMed  CAS  Google Scholar 

  22. Zhu Y, Leaderer D, Guss C et al (2007) Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin’s lymphoma. Int J Cancer 120:432–435. doi:10.1002/ijc.22321

    Article  PubMed  CAS  Google Scholar 

  23. Chu LW, Zhu Y, Yu K et al (2008) Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis 11:342–348. doi:10.1038/sj.pcan.4501024

    Article  PubMed  CAS  Google Scholar 

  24. Sahar S, Sassone-Corsi P (2007) Circadian clock and breast cancer: a molecular link. Cell Cycle 6:1329–1331

    Article  PubMed  CAS  Google Scholar 

  25. Kang TH, Sancar A (2009) Circadian regulation of DNA excision repair: implications for chrono-chemotherapy. Cell Cycle 8:1665–1667. doi:8707[pii]

    Article  PubMed  CAS  Google Scholar 

  26. Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in aetiology and treatment of breast cancer. Lancet 2:814–816. doi:10.1016/S0140-6736(78)92591-6

    Article  PubMed  CAS  Google Scholar 

  27. Filipski E, Li XM, Levi F (2006) Disruption of circadian coordination and malignant growth. Cancer Causes Control 17:509–514. doi:10.1007/s10552-005-9007-4

    Article  PubMed  Google Scholar 

  28. Shah PN, Mhatre MC, Kothari LS (1984) Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res 44:3403–3407

    PubMed  CAS  Google Scholar 

  29. Blask DE, Dauchy RT, Sauer LA et al (2003) Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression. Breast Cancer Res Treat 79:313–320. doi:10.1023/A:1024030518065

    Article  PubMed  CAS  Google Scholar 

  30. Megdal SP, Kroenke CH, Laden F et al (2005) Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer 41:2023–2032. doi:10.1016/j.ejca.2005.05.010

    Article  PubMed  Google Scholar 

  31. Hansen J (2006) Risk of breast cancer after night- and shift work: current evidence and ongoing studies in Denmark. Cancer Causes Control 17:531–537. doi:10.1007/s10552-005-9006-5

    Article  PubMed  Google Scholar 

  32. Davis S, Mirick DK (2006) Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 17:539–545. doi:10.1007/s10552-005-9010-9

    Article  PubMed  Google Scholar 

  33. IARC (ed) (2006) IARC monographs on the evaluation of carcinogenic risks to humans. Preamble. International Agency for Research on Cancer, Lyon, France

  34. Pronk A, Ji BT, Shu XO et al (2010) Night-shift work and breast cancer risk in a cohort of Chinese women. Am J Epidemiol 171:953–959. doi:10.1093/aje/kwq029

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hongwei Han, Lei Lei, and Yanrui Zhao for their technical assistance. We also thank Ms. Kate Newberry of the Department of Scientific Publications at M. D. Anderson Cancer Center for editing this manuscript. This study was supported partially by grants from the National Natural Science Foundation of China (No. 30771844), the Tianjin Science and Technology Committee Foundation (No. 08ZCGH202000; 09ZCZDSF04400), the Major State Basic Research Development Program of China (973 Program) (No. 2009CB918903), and Tianjin Municipal Science and Technology Commission (No. 08JCZDJC23600). The Tissue Bank is jointly supported by Tianjin Cancer Institute and Hospital and National Foundation for Cancer Research (US).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, H., Zhang, L., Cao, M. et al. The role of polymorphisms in circadian pathway genes in breast tumorigenesis. Breast Cancer Res Treat 127, 531–540 (2011). https://doi.org/10.1007/s10549-010-1231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1231-2

Keywords

Navigation