Skip to main content

Advertisement

Log in

Trace Element Concentrations in Human Tissues of Death Cases Associated With Secondary Infection and MOF After Severe Trauma

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Proper trace element level is crucial for the organs in maintaining normal physiological functions. Multiple organ failure (MOF) might be added to critically ill patients due to a lack of trace elements. Alterations of trace element levels in brain, heart, liver, and kidney after severe trauma, however, have been little studied so far. In this study, tissue samples of the frontal cortex of the brain, interventricular septum of the heart, right lobe of the liver, and upper pole of the kidney were obtained from forensic autopsies, of which 120 cases died during the 5th to 15th day of hospitalization, whereas the trauma death group and 43 cases immediately died due to severe craniocerebral trauma as the control group. Copper (Cu), iron (Fe), zinc (Zn), and selenium (Se) were quantified by inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Cu, Fe, Zn, and Se concentrations in the brain, heart, liver, and kidney in the trauma group decreased dramatically (p < 0.05) compared to the control group. The incidence of secondary infection and multiple organ failure (MOF) in the trauma death group were 78.33 and 29.17 %, respectively. The concentrations of all elements exhibited a significant correlation with secondary infection and MOF (p < 0.01). Our data suggest that low concentrations of Cu, Fe, Zn, and Se in pivotal organs may contribute to the incidence of secondary infection and MOF after severe trauma, which to some extent results in death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang G, Feng X, Yu X, Xu X, Wang D, Yang H, Shi X (2013) Prognostic value of blood zinc, iron, and copper levels in critically ill children with pediatric risk of mortality score III. Biol Trace Elem Res 152:300–304

    Article  CAS  PubMed  Google Scholar 

  2. Yuan WA, Yu XJ, Liu FQ, Wang HP, Wang D, Lai XP (2010) Effects of trace element supplementation on the inflammatory response in a rabbit model of major trauma. J Trace Elem Med Biol 24:36–41

    Article  CAS  PubMed  Google Scholar 

  3. Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan PH (2002) Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. J Neurosci 22:7923–7930

    CAS  PubMed  Google Scholar 

  4. Jordan J, Ghadge GD, Prehn JH, Toth PT, Roos RP, Miller RJ (1995) Expression of human copper/zinc-superoxide dismutase inhibits the death of rat sympathetic neurons caused by withdrawal of nerve growth factor. Mol Pharmacol 47:1095–1100

    CAS  PubMed  Google Scholar 

  5. Reid GM (1987) Sudden infant death syndrome: congenital copper deficiency. Med Hypotheses 24:167–175

    Article  CAS  PubMed  Google Scholar 

  6. Chatterjee S, Mookerjee A, Basu JM, Chakraborty P, Ganguly A, Adhikary A, Mukhopadhyay D, Ganguli S, Banerjee R, Ashraf M, Biswas J, Das PK, Sa G, Chatterjee M, Das T, Choudhuri SK (2009) A novel copper chelate modulates tumor associated macrophages to promote anti-tumor response of T cells. PLoS One 4, e7048

    Article  PubMed Central  PubMed  Google Scholar 

  7. Saaka M, Oosthuizen J, Beatty S (2009) Effect of joint iron and zinc supplementation on malarial infection and anaemia. East Afr J Public Health 6:55–62

    PubMed  Google Scholar 

  8. Ma J, Wen X, Mo F, Wang X, Shen Z, Li M (2014) Effects of different doses and duration of iron supplementation on curing iron deficiency anemia: an experimental study. Biol Trace Elem Res 162:242–251

    Article  CAS  PubMed  Google Scholar 

  9. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    CAS  PubMed  Google Scholar 

  10. Klotz LO, Kroncke KD, Buchczyk DP, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133:1448S–1451S

    CAS  PubMed  Google Scholar 

  11. Kosar F, Sahin I, Acikgoz N, Aksoy Y, Kucukbay Z, Cehreli S (2005) Significance of serum trace element status in patients with rheumatic heart disease: a prospective study. Biol Trace Elem Res 107:1–10

    Article  CAS  PubMed  Google Scholar 

  12. Kosar F, Sahin I, Taskapan C, Kucukbay Z, Gullu H, Taskapan H, Cehreli S (2006) Trace element status (Se, Zn, Cu) in heart failure. Anadolu Kardiyol Derg 6:216–220

    PubMed  Google Scholar 

  13. Wang G, Lai X, Yu X, Wang D, Xu X (2012) Altered levels of trace elements in acute lung injury after severe trauma. Biol Trace Elem Res 147:28–35

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Haro C, Soria M, Lopez-Colon JL, Llorente MT, Escanero JF (2011) Plasma trace elements levels are not altered by submaximal exercise intensities in well-trained endurance euhydrated athletes. J Trace Elem Med Biol 25(Suppl 1):S54–58

    Article  CAS  PubMed  Google Scholar 

  15. Xu G, Hu B, Chen G, Yu X, Luo J, Lv J, Gu J (2015) Analysis of blood trace elements and biochemical indexes levels in severe craniocerebral trauma adults with glasgow coma scale and injury severity score. Biol Trace Elem Res 164:192–197

    Article  CAS  PubMed  Google Scholar 

  16. Andrasi E, Nadasdi J, Molnar Z, Bezur L, Ernyei L (1990) Determination of main and trace element contents in human brain by NAA and ICP-AES methods. Biol Trace Elem Res 26–27:691–698

    Article  PubMed  Google Scholar 

  17. Frohlich M, Lefering R, Probst C, Paffrath T, Schneider MM, Maegele M, Sakka SG, Bouillon B, Wafaisade A, Committee on Emergency Medicine IC, Trauma Management of the German Trauma Society Sektion NIS (2014) Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg 76:921–928

    Article  PubMed  Google Scholar 

  18. Wang D, Yang TT, Yu W, Yu XJ, Wang HP, Wang GH (2011) Iron and ferritin changes in multiple organs failure after trauma. Fa Yi Xue Za Zhi 27:169–173

    PubMed  Google Scholar 

  19. Dewar DC, Tarrant SM, King KL, Balogh ZJ (2013) Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg 74:774–779

    Article  PubMed  Google Scholar 

  20. Bonham M, O'Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87:393–403

    Article  CAS  PubMed  Google Scholar 

  21. Ilback NG, Frisk P, Mohamed N, Gadhasson IL, Blomberg J, Friman G (2007) Virus induces metal-binding proteins and changed trace element balance in the brain during the course of a common human infection (Coxsackievirus B3) in mice. Sci Total Environ 381:88–98

    Article  PubMed  Google Scholar 

  22. Hoppe M, Hulthen L, Hallberg L (2006) The relative bioavailability in humans of elemental iron powders for use in food fortification. Eur J Nutr 45:37–44

    Article  CAS  PubMed  Google Scholar 

  23. Glover-Cutter KM, Alderman S, Dombrowski JE, Martin RC (2014) Enhanced oxidative stress resistance through activation of a zinc deficiency transcription factor in Brachypodium distachyon. Plant Physiol 166:1492–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bostanci Z, Mack RP Jr, Lee S, Soybel DI, Kelleher SL (2014) Paradoxical zinc toxicity and oxidative stress in the mammary gland during marginal dietary zinc deficiency. Reprod Toxicol. doi:10.1016/j.reprotox.2014.07.076

    PubMed  Google Scholar 

  25. Ravaglia G, Forti P, Maioli F, Bastagli L, Facchini A, Mariani E, Savarino L, Sassi S, Cucinotta D, Lenaz G (2000) Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged >/=90 years. Am J Clin Nutr 71:590–598

    CAS  PubMed  Google Scholar 

  26. Ip C (1998) Lessons from basic research in selenium and cancer prevention. J Nutr 128:1845–1854

    CAS  PubMed  Google Scholar 

  27. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  28. Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2015) Anatomical regional differences in selenium levels in the human brain. Biol Trace Elem Res 163:89–96

    Article  CAS  PubMed  Google Scholar 

  29. Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2014) Anatomical region differences and age-related changes in copper, zinc, and manganese levels in the human brain. Biol Trace Elem Res 161:190–201

    Article  CAS  PubMed  Google Scholar 

  30. Markesbery WR, Ehmann WD, Alauddin M, Hossain TI (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:19–28

    Article  CAS  PubMed  Google Scholar 

  31. Stedman JD, Spyrou NM (1995) Major and trace element concentration differences between the right and left hemispheres of the “normal” human brain. Nutrition 11:542–545

    CAS  PubMed  Google Scholar 

  32. Ilback NG, Lindh U, Wesslen L, Fohlman J, Friman G (2000) Trace element distribution in heart tissue sections studied by nuclear microscopy is changed in Coxsackievirus B3 myocarditis in methyl mercury-exposed mice. Biol Trace Elem Res 78:131–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Long Xu (Laboratory of Environmental Medicine and Developmental Toxicology, SUMC) for critical reading of the manuscript. We appreciate the support from the Zhejiang Provincial Natural Science Foundation (LQ14H230001), Scientific Research Fund of Zhejiang Provincial Education Department (Y201330031), and the National Natural Science Foundation Council of China (30772458, 81400489, and 81400654).

Conflict of Interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Yu.

Additional information

Guangtao Xu, Ruibing Su and Bo Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Su, R., Li, B. et al. Trace Element Concentrations in Human Tissues of Death Cases Associated With Secondary Infection and MOF After Severe Trauma. Biol Trace Elem Res 168, 335–339 (2015). https://doi.org/10.1007/s12011-015-0378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0378-4

Keywords

Navigation