Skip to main content
Log in

Screening of the Anti-Aflatoxin B1 Activity of Peruvian Plant Extracts: Relation with their Composition

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Aflatoxin B1 (AFB1) is the most hazardous mycotoxin for humans. It is mainly produced by Aspergillus flavus and A. parasiticus in a wide range of crops. Alternative strategies to the use of pesticides are more and more studied in order to limit the fungal development as well as the synthesis of aflatoxins in food and feeds. The use of aqueous plants extracts with high an-tioxidant activity has been the issue of different studies because of their impact on AFB1 production. The identification of plant extracts able to block aflatoxinogenesis could represent an ecofriendly and sustainable strategy for small producers to protect their crops from contamination, taking advantage of the local plant ressources. In this study, we characterized the antifungal and anti-aflatoxin B1 activity of 10 Peruvian plants selected for their known biological activities. For some plant extracts, the activity against AFB1 production was correlated with their composition and especially their polyphenols content and subsequent antioxidant activity. This is the case for Aloysia citrodora (AC) that inhibited 78% of the AFB1 synthesis, followed by Annona muricata (AM) (69%), Uncaria tomentosa (UT) (58%), and Myrciaria dubia (MD) (32%). By contrast, extracts of Dysphania ambrosioides (DA) and mainly Minthostachys mollis (MM) were effective against AFB1 synthesis inhibiting 47% and 89% of the production respectively but displayed a very limited antioxidant activity (IC50 DDPH > 400 mg/L), suggesting another route of inhibition. This is the first study demonstrating the anti-aflatoxin B1 effect of aqueous extracts of these plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data will be available on request to corresponding author.

References

  • Abdel-Razek, A., Badr, A., & Shehata, M. (2017). Characterization of Olive oil by-products: Antioxidant activity, its ability to reduce aflatoxigenic fungi hazard and its aflatoxins. Annual Research & Review in Biology, 14, 1–14. https://doi.org/10.9734/ARRB/2017/35065

    Article  Google Scholar 

  • Adewole, S., & Ojewole, J. (2009). Protective effects of Annona muricata linn. (Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. African Journal of Traditional, Complementary and Alternative Medicines, 6(1), 30–41. https://doi.org/10.4314/ajtcam.v6i1.57071

  • Ajaib, M., Hussain, T., Farooq, S., & Ashiq, M. (2016). Analysis of antimicrobial and antioxidant activities of chenopodium ambrosioides: an ethnomedicinal plant. 2016, 1–11. https://doi.org/10.1155/2016/4827157

  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

    Article  CAS  Google Scholar 

  • Bailly, S., Mahgubi, A. E., Carvajal-Campos, A., Lorber, S., Puel, O., Oswald, I. P., Bailly, J.-D., & Orlando, B. (2018). Occurrence and identification of Aspergillus section flavi in the context of the emergence of aflatoxins in French maize. Toxins, 10(12), 525. https://doi.org/10.3390/toxins10120525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlowski, A., Zawada, K., Wawer, I., & Paradowska, K. (2013). Antioxidant properties of medicinal plants from Peru. 4, 71–77. https://doi.org/10.4236/fns.2013.48A009

  • Bluma, R., Amaiden, M. R., & Etcheverry, M. (2008). Screening of Argentine plant extracts: impact on growth parameters and aflatoxin B1 accumulation by Aspergillus section Flavi. International Journal of Food Microbiology, 122(1–2), 114–125. https://doi.org/10.1016/j.ijfoodmicro.2007.11.050

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Bryden, W. L. (2012). Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Animal Feed Science and Technology, 173(1), 134–158. https://doi.org/10.1016/j.anifeedsci.2011.12.014

    Article  CAS  Google Scholar 

  • Bussmann, R. W., & Sharon, D. (2006). Traditional medicinal plant use in Northern Peru: tracking two thousand years of healing culture. Journal of Ethnobiology and Ethnomedicine, 2(1), 47–64. https://doi.org/10.1186/1746-4269-2-47

    Article  PubMed  PubMed Central  Google Scholar 

  • Bustamante Gonzales, S. R. (2018). Evaluación del potencial antifúngico de los extractos etanólicos de Phyllanthus niruri y Minthostachys mollis frente al hongo Botrytis cinerea. Universidad Nacional Mayor de San Marcos. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/9058

  • Caceres, I., El Khoury, R., Bailly, S., Oswald, I. P., Puel, O., & Bailly, J.-D. (2017). Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genetics and Biology, 107, 77–85. https://doi.org/10.1016/j.fgb.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  • Caceres, I., El Khoury, R., Medina, Á., Lippi, Y., Naylies, C., Atoui, A., El Khoury, A., Oswald, I. P., Bailly, J.-D., & Puel, O. (2016). Deciphering the anti-aflatoxinogenic properties of eugenol using a large-scale q-PCR approach. Toxins, 8(5), 123. https://doi.org/10.3390/toxins8050123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano, C., Bonilla, P., Roque, M., & Ruiz, J. (2008). Actividad antimicótica in vitro y metabolitos del aceite esencial de las hojas de Minthostachys Mollis (muña). Revista Peruana De Medicina Experimental y Salud Publica, 25(3), 298–301.

    Google Scholar 

  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Cruz Cabral, L., Fernández Pinto, V., & Patriarca, A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166(1), 1–14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  • De Sousa, O. V., Vieira, G. D.-V., De Pinho, J. de J. R. G., Yamamoto, C. H., & Alves, M. S. (2010). Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. International Journal of Molecular Sciences, 11(5), 2067–2078. https://doi.org/10.3390/ijms11052067

  • Deabes, M., Khalil, W., Kh, A.-E.-A., Ibrahim, S., & Naguib, K. (2022). The inhibitory effect of different ephedra plant extracts on the Aspergillus flavus growth and aflatoxin B 1 gene expression. Jordan Journal of Biological Sciences, 15, 59–66. https://doi.org/10.54319/jjbs/150108

  • Dent, M., Dragović-Uzelac, V., Penić, M., Bosiljkov, T., & Levaj, B. (2013). The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technology and Biotechnology, 51(1), 84–91.

  • Duraisamy, R., Shuge, T., Worku, B., Kerebo Berekete, A., & M Ramasamy, K. (2020). Extraction, screening and spectral characterization of Tanninsfrom Acacia Xanthophloea (fever tree) bark. Research Journal of Textile and Leather, 1(1), 1–10. https://doi.org/10.46590/rjtl.2020.010101

  • El Khoury, R., Caceres, I., Puel, O., Bailly, S., Atoui, A., Oswald, I. P., El Khoury, A., & Bailly, J.-D. (2017). Identification of the anti-aflatoxinogenic activity of Micromeria graeca and elucidation of its molecular mechanism in Aspergillus flavus. Toxins, 9(3), 87. https://doi.org/10.3390/toxins9030087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Mahgubi, A., Puel, O., Bally, S., Tadrist, S., Querin, A., Ouadia, A., Oswald, I. P., & Bailly, J.-D. (2013). Distribution and toxigenicity of Aspergillus section flavi in spices marketed in Morocco. Food Control, 32, 143–148. https://doi.org/10.1016/j.foodcont.2012.11.013

    Article  CAS  Google Scholar 

  • Gibb, H., Devleesschauwer, B., Bolger, P. M., Wu, F., Ezendam, J., Cliff, J., Zeilmaker, M., Verger, P., Pitt, J., Baines, J., Adegoke, G., Afshari, R., Liu, Y., Bokkers, B., van Loveren, H., Mengelers, M., Brandon, E., Havelaar, A. H., & Bellinger, D. (2015). World Health Organization estimates of the global and regional disease burden of four foodborne chemical toxins, 2010: a data synthesis. F1000Research, 4, 1393. https://doi.org/10.12688/f1000research.7340.1

  • Gómez, J. V., Tarazona, A., Mateo-Castro, R., Gimeno-Adelantado, J. V., Jiménez, M., & Mateo, E. M. (2018). Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 35(8), 1581–1595. https://doi.org/10.1080/19440049.2017.1419287

  • Grintzalis, K., Vernardis, S. I., Klapa, M. I., & Georgiou, C. D. (2014). Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Applied and Environmental Microbiology, 80(18), 5561–5571. https://doi.org/10.1128/AEM.01282-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2019). Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 11(7), 375. https://doi.org/10.3390/toxins11070375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: botrytis as a case study. Journal of Chemical Biology, 7(4), 133–141. https://doi.org/10.1007/s12154-014-0113-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez, C., Cadenillas, L., Maghubi, A. E., Caceres, I., Durrieu, V., Mathieu, C., & Bailly, J.-D. (2021). Mimosa tenuiflora aqueous extract: role of condensed tannins in anti-aflatoxin B1 activity in Aspergillus flavus. Toxins, 13(6), 391. https://doi.org/10.3390/toxins13060391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero, M., Martín-Álvarez, P. J., Señoráns, F. J., Cifuentes, A., & Ibáñez, E. (2005). Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chemistry, 93(3), 417–423. https://doi.org/10.1016/j.foodchem.2004.09.037

    Article  CAS  Google Scholar 

  • IARC. (2012). Fungi producing significant mycotoxins. IARC Scientific Publications, 158, 1–30.

    Google Scholar 

  • Kumar, J. K., Monica, S. S., Bojan, V., Suganthi, A., & Paramasivam, M. (2021). Impact of pesticide exposure on environment and biodiversity: a review. Agricultural Reviews, 1, 1–12. https://doi.org/10.18805/ag.R-2325

  • Kumar, R., Mishra, A. K., Dubey, N. K., & Tripathi, Y. B. (2007). Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. International Journal of Food Microbiology, 115(2), 159–164. https://doi.org/10.1016/j.ijfoodmicro.2006.10.017

    Article  CAS  PubMed  Google Scholar 

  • Luo, S., Du, H., Kebede, H., Liu, Y., & Xing, F. (2021). Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control, 127, 108–120. https://doi.org/10.1016/j.foodcont.2021.108120

    Article  CAS  Google Scholar 

  • Makhuvele, R., Naidu, K., Gbashi, S., Thipe, V. C., Adebo, O. A., & Njobeh, P. B. (2020). The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon, 6(10), e05291. https://doi.org/10.1016/j.heliyon.2020.e05291

  • Marei, G. I. K., Abdel Rasoul, M. A., & Abdelgaleil, S. A. M. (2012). Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology, 103(1), 56–61. https://doi.org/10.1016/j.pestbp.2012.03.004

  • Ministerio del ambiente. (2010). Peru: Economia y diversidad biologica. Zona de comunicaciones SAC.

  • Mo, H. Z., Zhang, H., Wu, Q. H., & Hu, L. B. (2013). Inhibitory effects of tea extract on aflatoxin production by Aspergillus flavus. Letters in Applied Microbiology, 56(6), 462–466. https://doi.org/10.1111/lam.12073

  • Muñoz-Acevedo, A., Méndez, L. Y. V., Stashenko, E. E., & Kouznetsov, V. (2011). Improved Trolox® equivalent antioxidant capacity assay for efficient and fast search of new antioxidant agents. 1, 86–102. https://doi.org/10.1080/22297928.2011.10648207

  • Navarro-Hoyos, M., Alvarado-Corella, D., Moreira-Gonzalez, I., Arnaez-Serrano, E., & Monagas-Juan, M. (2018). Polyphenolic composition and antioxidant activity of aqueous and ethanolic extracts from Uncaria tomentosa bark and leaves. Antioxidants (Basel, Switzerland), 7(5), 65. https://doi.org/10.3390/antiox7050065

    Article  CAS  PubMed  Google Scholar 

  • Njoki, L. M., Okoth, S. A., & Wachira, P. M. (2017). Effects of medicinal plant extracts and photosensitization on aflatoxin producing Aspergillus flavus (Raper and Fennell). International Journal of Microbiology, 2017, 1–9. https://doi.org/10.1155/2017/5273893

    Article  CAS  Google Scholar 

  • Nobili, C., De Acutis, A., Reverberi, M., Bello, C., Leone, G. P., Palumbo, D., Natella, F., Procacci, S., Zjalic, S., & Brunori, A. (2019). Buckwheat hull extracts inhibit Aspergillus flavus growth and AFB1 biosynthesis. Frontiers in Microbiology, 10(1997). https://doi.org/10.3389/fmicb.2019.01997

  • Ojiambo, S., Battilani, P., Cary, J. W., Blum, B. H., & Carbone, I. (2018). Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control. Phytopathology, 108(9), 1024–1037. https://doi.org/10.1094/PHYTO-04-18-0134-RVW

  • Olech, M., & Łyko, L. (2020). Influence of accelerated solvent extraction conditions on the LC-ESI-MS/MS polyphenolic profile, triterpenoid content, and antioxidant and anti-lipoxygenase activity of Rhododendron luteum sweet leaves. Antioxidants, 9, 822. https://doi.org/10.3390/antiox9090822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo, R., Ribotta, P., & Grosso, N. R. (2018). Antioxidant activity of essential oils extracted from Aloysia triphylla and Minthostachys mollis that improve the oxidative stability of sunflower oil under accelerated storage conditions. European Journal of Lipid Science and Technology, 120(8), 1–10. https://doi.org/10.1002/ejlt.201700374

    Article  CAS  Google Scholar 

  • Olszowy, M., & Dawidowicz, A. L. (2018). Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chemical Papers, 72(2), 393–400. https://doi.org/10.1007/s11696-017-0288-3

    Article  CAS  Google Scholar 

  • Ponzilacqua, B., Rottinghaus, G. E., Landers, B. R., & Oliveira, C. A. F. (2019). Effects of medicinal herb and Brazilian traditional plant extracts on in vitro mycotoxin decontamination. Food Control, 100, 24–27. https://doi.org/10.1016/j.foodcont.2019.01.009

    Article  CAS  Google Scholar 

  • Rammanee, K., & Hongpattarakere, T. (2011). Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food and Bioprocess Technology, 4(6), 1050–1059. https://doi.org/10.1007/s11947-010-0507-1

    Article  CAS  Google Scholar 

  • Repajić, M., Cegledi, E., Kruk, V., Pedisić, S., Çınar, F., Kovačević, D. B., Žutić, I., & Dragović-Uzelac, V. (2020). Accelerated solvent extraction as a green tool for the recovery of polyphenols and pigments from wild nettle leaves. Processes, 8(7), 803. https://doi.org/10.3390/pr8070803

    Article  CAS  Google Scholar 

  • Ribeiro, L. P., Domingues, V. C., Gonçalves, G. L. P., Fernandes, J. B., Glória, E. M., & Vendramim, J. D. (2020). Essential oil from Duguetia lanceolata St.-Hil. (Annonaceae): suppression of spoilers of stored-grain. Food Bioscience, 36. https://doi.org/10.1016/j.fbio.2020.100653

  • Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: A technique for sample preparation. Analytical Chemistry, 68(6), 1033–1039. https://doi.org/10.1021/ac9508199

    Article  CAS  Google Scholar 

  • Santos, D. T., Veggi, P. C., & Meireles, M. A. A. (2012). Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. Journal of Food Engineering, 108(3), 444–452. https://doi.org/10.1016/j.jfoodeng.2011.08.022

    Article  CAS  Google Scholar 

  • Taniwaki, M. H., Pitt, J. I., & Magan, N. (2018). Aspergillus species and mycotoxins: Occurrence and importance in major food commodities. Current Opinion in Food Science, 23, 38–43. https://doi.org/10.1016/j.cofs.2018.05.008

    Article  Google Scholar 

  • Vamvakas, S. -S., Chroni, M., Genneos, F., & Gizeli, S. (2021). Vaccinium myrtillus L. dry leaf aqueous extracts suppress aflatoxins biosynthesis by Aspergillus flavus. Food Bioscience, 39. https://doi.org/10.1016/j.fbio.2020.100790

  • Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Balckwell Scientific Oxford, UK. Boston, MA, USA. ISBN 978–0–632–02969–3.

  • Zhou, W., Hu, L. B., Zhao, Y., Wang, M. Y., Zhang, H., & Mo, H. Z. (2015). Inhibition of fungal aflatoxin B1 biosynthesis by diverse botanically-derived polyphenols. Tropical Journal of Pharmaceutical Research, 14(4), 605–609. https://doi.org/10.4314/tjpr.v14i4.7

    Article  CAS  Google Scholar 

Download references

Funding

This Ministère de l’Enseignement Supérieur et de la Recherche (MEST) funded the Ph-D grant of Laura F Cadenillas. This work has also benefited from a State grant managed by the National Research Agency under the “Investissements d'Avenir” programme with the reference ANR-18-EURE-0021.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jean-Denis Bailly and Vanessa Durrieu. Methodology: Céline Mathieu, Jean-Denis Bailly, and Vanessa Durrieu. Formal analysis: Laura F Cadenillas and Christopher Hernandez. Writing-original draft preparation: Laura F Cadenillas, Jean-Denis Bailly, and Vanessa Durrieu. Writing-review and editing: Laura F Cadenillas, Jean-Denis Bailly, and Vanessa Durrieu. Supervizion: Jean-Denis Bailly and Vanessa Durrieu.

Corresponding author

Correspondence to Vanessa Durrieu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadenillas, L.F., Hernandez, C., Mathieu, C. et al. Screening of the Anti-Aflatoxin B1 Activity of Peruvian Plant Extracts: Relation with their Composition. Food Bioprocess Technol 16, 1324–1334 (2023). https://doi.org/10.1007/s11947-023-03002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03002-7

Keywords

Navigation