Skip to main content
Log in

Production of Functional Non-dairy Creamer using Nigella sativa oil Via Fluidized Bed Coating Technology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Nigella sativa oil has a high potential to be developed into bioactive food ingredients. The aim of this study is to produce a low-fat, non-dairy creamer (NDC) from Nigella sativa oil (NSO) that is extracted by a supercritical fluid technique. The emulsion was processed with total solids of 40% and the drying process was performed using a spray dry technique at 160 °C inlet air temperature to obtain the microencapsulated oil. The agglomeration conditions (fluidizing time, fluid air temperature, and feed flow rate), were optimized using a response surface methodology (RSM) with a central composite design. The microencapsulated oil demonstrated low moisture content, high water solubility, strong antioxidant activity and high thymoquinone content in the developed creamer. The optimum conditions of the fluidized bed drying process were inlet air temperature (50 °C), drying time (25 min), and feed flow rate (1 mL/min). The sensory evaluation revealed that consumers’ acceptability is high for the developed coffee creamer. The findings indicated the high potential of the microencapsulated oil for applications to mass produce and commercialize functional non-dairy creamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abedi, A., Rismanchi, M., Shahdoostkhany, M., Mohammadi, A., & Hosseini, H. (2016). Microencapsulation of Nigella sativa seeds oil containing thymoquinone by spray-drying for functional yogurt production. International Journal of Food Science & Technology, 51(10), 2280–2289.

    Article  CAS  Google Scholar 

  • ADPI. (1992). Standards for Grades of Dry Milks, Including Methods of Analysis. American Dry Milk Institute.

  • Alu’datt, M. H., Rababah, T., Alhamad, M. N., Alodat, M., Al-Mahasneh, M. A., Gammoh, S., et al. (2017). Molecular characterization and bio-functional property determination using SDS-PAGE and RP-HPLC of protein fractions from two Nigella species. Food chemistry, 230, 125–134.

    Article  Google Scholar 

  • AOAC. (1995). Official Methods of Analyzes. In Association of Official Analytical Chemist. Washington, DC.

  • Bae, E. K., & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 549–560.

    Article  CAS  Google Scholar 

  • Bootkote, P., Soponronnarit, S., & Prachayawarakorn, S. (2016). Process of producing parboiled rice with different colors by fluidized bed drying technique including tempering. Food and Bioprocess Technology, 9(9), 1574–1586.

    Article  CAS  Google Scholar 

  • Bourgou, S., Pichette, A., Marzouk, B., & Legault, J. (2010). Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South African Journal of Botany, 76(2), 210–216.

    Article  CAS  Google Scholar 

  • Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.

    Article  CAS  Google Scholar 

  • Cheikh-Rouhou, S., Besbes, S., Hentati, B., Blecker, C., Deroanne, C., & Attia, H. (2007). Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food chemistry, 101(2), 673–681.

    Article  CAS  Google Scholar 

  • Coronel-Aguilera, C. P., & San Martín-González, M. F. (2015). Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT-Food Science and Technology, 62(1), 187–193.

    Article  CAS  Google Scholar 

  • Dacanal, G. C., Hirata, T. A. M., & Menegalli, F. C. (2013). Fluid dynamics and morphological characterization of soy protein isolate particles obtained by agglomeration in pulsed-fluid bed. Powder technology, 247, 222–230.

    Article  CAS  Google Scholar 

  • Dhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical reviews in food science and nutrition, 51(5), 432–441.

    Article  CAS  Google Scholar 

  • FAO, WFP, & IFAD. (2015). The State of food Insecurity in the world. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome.

  • Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M.-E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35.

    Article  CAS  Google Scholar 

  • Gili, R. D., Penci, M. C., Irigoyen, M. R. T., Giner, S. A., & Ribotta, P. D. (2018). Effect of wheat germ heat treatment by fluidised bed on the kinetics of lipase inactivation. Food and Bioprocess Technology, 11(5), 1002–1011.

    Article  CAS  Google Scholar 

  • Hedayatnia, S., Mirhosseini, H., Amid, B. T., Sarker, Z. I., Veličkovska, S. K., & Karim, R. (2016a). Effect of different fat replacers and drying methods on thermal behaviour, morphology and sensory attributes of reduced-fat coffee creamer. LWT-Food Science and Technology, 72, 330–342.

    Article  CAS  Google Scholar 

  • Hedayatnia, S., Mirhosseini, H., Tamnak, S., & Golpira, F. (2016b). Improvement of glass transition and flowability of reduced-fat coffee creamer: effect of fat replacer and fluidized bed drying. Food and Bioprocess Technology, 9(4), 686–698.

    Article  CAS  Google Scholar 

  • Hooda, S., & Jood, S. (2005). Organoleptic and nutritional evaluation of wheat biscuits supplemented with untreated and treated fenugreek flour. Food Chemistry, 90(3), 427–435.

    Article  CAS  Google Scholar 

  • Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205.

    Article  Google Scholar 

  • Khazaei, K. M., Jafari, S. M., Ghorbani, M., & Kakhki, A. H. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate polymers, 105, 57–62.

    Article  Google Scholar 

  • Kıralan, M. (2014). Changes in volatile compounds of black cumin (Nigella sativa L.) seed oil during thermal oxidation. International journal of food properties, 17(7), 1482–1489.

    Article  Google Scholar 

  • Krupa, H., & Patel, H. G. (2011). Synergy of dairy with non-dairy Ingredients or product: a review. African Journal of Food Science, 5(16), 817–832.

    CAS  Google Scholar 

  • Mirhosseini, H., Tan, C. P., Hamid, N. S. A., Yusof, S., & Chern, B. H. (2009). Characterization of the influence of main emulsion components on the physicochemical properties of orange beverage emulsion using response surface methodology. Food Hydrocolloids, 23(2), 271–280.

    Article  CAS  Google Scholar 

  • Mohammed, N. K., Manap, A., Yazid, M., Tan, C. P., Muhialdin, B. J., Alhelli, A. M., et al. (2016). The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella sativa L.) Oil. Evidence-Based Complementary and Alternative Medicine, 2016, 1–10.

    Article  Google Scholar 

  • Mohammed, N. K., Tan, C. P., Manap, Y. A., Alhelli, A. M., & Hussin, A. S. M. (2017). Process conditions of spray drying microencapsulation of Nigella sativa oil. Powder Technology., 315, 1–14. https://doi.org/10.1016/j.powtec.2017.03.045.

    Article  CAS  Google Scholar 

  • Mohammed, N. K., Meor Hussin, A. S., Chin Ping, T., Abdul Manap, M. Y., & Alhelli, A. M. (2018). Quality changes of microencapsulated Nigella sativa oil upon accelerated storage. International Journal of Food Properties., 20(sup3), S2395–S2408. https://doi.org/10.1080/10942912.2017.1371189.

    Article  CAS  Google Scholar 

  • Nep, E. I., & Conway, B. R. (2011). Physicochemical characterization of grewia polysaccharide gum: effect of drying method. Carbohydrate Polymers, 84(1), 446–453.

    Article  CAS  Google Scholar 

  • Obón, J. M., Castellar, M. R., Alacid, M., & Fernández-López, J. A. (2009). Production of a red–purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. Journal of Food Engineering, 90(4), 471–479.

    Article  Google Scholar 

  • Oliveira, D. M., Clemente, E., Afonso, M. R. A., & da Costa, J. M. C. (2013). Hygroscopic behavior of lyophilized powder of grugru palm (Acrocomia aculeata). American Journal of Analytical Chemistry, 4(10), 1–7.

    Article  Google Scholar 

  • Ozdemir, N., Kantekin-Erdogan, M. N., Tat, T., & Tekin, A. (2018). Effect of black cumin oil on the oxidative stability and sensory characteristics of mayonnaise. Journal of food science and technology, 1–7.

  • Palamanit, A., Prachayawarakorn, S., Tungtrakul, P., & Soponronnarit, S. (2016). Performance evaluation of top-spray fluidized bed coating for healthy coated rice production. Food and Bioprocess Technology, 9(8), 1317–1326.

    Article  CAS  Google Scholar 

  • Peterson, D. M. (2001). Oat Antioxidants. Journal of Cereal Science 33(2), 115-129.

  • Pordy, W. T. (1994, November 22). Low fat, low cholesterol, and low calorie dairy creamer. Google Patents.

  • Rayo, L. M., e Carvalho, L. C., Sardá, F. A. H., Dacanal, G. C., Menezes, E. W., & Tadini, C. C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT-Food Science and Technology, 63(1), 461–469.

    Article  CAS  Google Scholar 

  • Ren, G., Li, D., Wang, L., Özkan, N., & Mao, Z. (2010). Morphological properties and thermoanalysis of micronized cassava starch. Carbohydrate polymers, 79(1), 101–105.

    Article  CAS  Google Scholar 

  • Schubert, H. (1993). Instantization of powdered food products. International Chemical Engineering, 33(1), 28–45.

    Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152–178). Elsevier.

  • Szulc, K., Nazarko, J., Ostrowska-Ligęza, E., & Lenart, A. (2016). Effect of fat replacement on flow and thermal properties of dairy powders. LWT-Food Science and Technology, 68, 653–658.

    Article  CAS  Google Scholar 

  • Vergara-Salinas, J. R., Pérez-Jiménez, J., Torres, J. L., Agosin, E., & Pérez-Correa, J. R. (2012). Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). Journal of agricultural and food chemistry, 60(44), 10920–10929.

    Article  CAS  Google Scholar 

  • Vongsvivut, J., Heraud, P., Zhang, W., Kralovec, J. A., McNaughton, D., & Barrow, C. J. (2012). Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy. Food chemistry, 135(2), 603–609.

    Article  CAS  Google Scholar 

  • Wang, B., & Liu, J. (2014). Trans-free nondairy creamer prepared from enzymatic interesterification of soybean oil and fully hydrogenated soybean oil. Journal of food process engineering, 37(4), 339–348.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by University Putra Malaysia grant (GP-IPS/2014/9438743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Shobirin Meor Hussin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, N.K., Tan, C.P., Abd Manap, M.Y. et al. Production of Functional Non-dairy Creamer using Nigella sativa oil Via Fluidized Bed Coating Technology. Food Bioprocess Technol 12, 1352–1365 (2019). https://doi.org/10.1007/s11947-019-02294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02294-y

Keywords

Navigation