Skip to main content
Log in

Cold Plasma Treatment of Little Millet Flour: Impact on Bioactives, Antinutritional Factors and Functional Properties

  • Research
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

This study delves into the transformative effects of atmospheric cold plasma (CP) treatment on little millet flour (LMF), specifically exploring alterations in bioactive compounds, antinutritional factors, and functional properties. Foaming and emulsification properties experienced noteworthy enhancements with plasma treatment, manifesting in significant increases in foaming capacity (up to 51.47 ± 0.49%), foaming stability, emulsification ability, and emulsion stability (up to 47.02 ± 0.35%). The treatment also positively influenced water absorption index and swelling power. Antinutritional factors, including tannins and saponins, exhibited substantial reductions following plasma treatment. Saponin content, for instance, decreased by an impressive 58% after exposure to 20 kV for 20 min. Conversely, bioactive compounds such as phenolic content and antioxidant activity saw significant increases. Total phenolic content (TPC) rose from 527.54 ± 8.94 to 575.82 ± 3.58 mg GAE/100 g, accompanied by a remarkable 59% boost in antioxidant activity. Interestingly, plasma treatment did not exhibit a discernible effect on pasting properties. These findings collectively underscore the potential of atmospheric CP treatment as a novel and effective method for enhancing the functional and nutritional attributes of LMF, thereby opening new avenues for its application in food science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Press Information Bureau. State/UTs procured 6.07 Lakh Tonnes of millets during Kharif Marketing Season 2021-22 for distribution (2023) [cited 2023 24 March]; Available from: https://pib.gov.in/PressReleasePage.aspx?PRID=1910386

  2. IYM. International Year of Millets (IYM 2023) (2023) [cited 2023 18 December]; Available from: https://www.fao.org/millets-2023/en

  3. Dekka S, Paul A, Vidyalakshmi R et al (2023) Potential processing technologies for utilization of millets: an updated comprehensive review. J Food Process Eng 10:14279. https://doi.org/10.1111/jfpe.14279

    Article  Google Scholar 

  4. Dey S, Saxena A, Kumar Y et al (2022) Understanding the antinutritional factors and bioactive compounds of kodo millet (Paspalum scrobiculatum) and little millet (Panicum sumatrense). J Food Qual 1578448. https://doi.org/10.1155/2022/1578448

  5. Mannuramath M, Yenagi N, Orsat V (2015) Quality evaluation of little millet (Panicum miliare) incorporated functional bread. J Food Sci Technol 12:8357–8363. https://doi.org/10.1007/s13197-015-1932-y

    Article  Google Scholar 

  6. Chakraborty SK, Kotwaliwale N, Navale SA (2018) Rheological characterization of gluten free millet flour dough. J Food Meas Charact 2:1195–1202. https://doi.org/10.1007/s11694-018-9733-4

    Article  Google Scholar 

  7. Doddabematti SP, Siliveru K, Zheng Y (2023) Emerging applications of cold plasma technology in cereal grains and products. Trends Food Sci Technol 141:104177. https://doi.org/10.1016/j.tifs.2023.104177

    Article  CAS  Google Scholar 

  8. Sharafodin H, Soltanizadeh N (2022) Potential application of DBD plasma technique for modifying structural and physicochemical properties of soy protein isolate. Food Hydrocol 122:107077. https://doi.org/10.1016/j.foodhyd.2021.107077

    Article  CAS  Google Scholar 

  9. Ng SW, Lu P, Rulikowska A, Boehm D, O’Neill G et al (2021) The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chem 342:128283. https://doi.org/10.1016/j.foodchem.2020.128283

    Article  CAS  PubMed  Google Scholar 

  10. Venkataratnam H, Sarangapani C, Cahill O et al (2019) Effect of cold plasma treatment on the antigenicity of peanut allergen Ara h 1. Innov Food Sci Emerg Technol 52:368–375. https://doi.org/10.1016/j.ifset.2019.02.001

    Article  CAS  Google Scholar 

  11. Mahnot NK, Mahanta CL, Farkas BE et al (2019) Atmospheric cold plasma inactivation of Escherichia coli and Listeria monocytogenes in tender coconut water: Inoculation and accelerated shelf-life studies. Food Control 106:106678. https://doi.org/10.1016/j.foodcont.2019.06.004

    Article  CAS  Google Scholar 

  12. Jaddu S, Pradhan RC, Dwivedi M (2022) Effect of multipin atmospheric cold plasma discharge on functional properties of little millet (Panicum miliare) flour. Innov Food Sci Emerg Technol 77:102957. https://doi.org/10.1016/j.ifset.2022.102957

    Article  CAS  Google Scholar 

  13. Wan Z, Misra NN, Li G et al (2021) High voltage atmospheric cold plasma treatment of Listeria innocua and Escherichia coli K-12 on queso fresco (fresh cheese). LWT-Food Sci Technol 146:111406. https://doi.org/10.1016/j.lwt.2021.111406

    Article  CAS  Google Scholar 

  14. Mahnot NK, Siyu L-P, Wan Z et al (2020) In-package cold plasma decontamination of fresh-cut carrots: microbial and quality aspects. J Phys D: Appl Phys 15:154002. https://doi.org/10.1088/1361-6463/ab6cd3

    Article  CAS  Google Scholar 

  15. Longvah T, Ananthan R, Bhaskarachary K et al (2017) Indian Food Composition tables. National Institute of Nutrition, ed. T. Longvah

    Google Scholar 

  16. Sarangapani C, Yamuna Devi R, Thirumdas R et al (2017) Physico-chemical properties of low-pressure plasma treated black gram. LWT-Food Sci Technol 79:102–110. https://doi.org/10.1016/j.lwt.2017.01.017

    Article  CAS  Google Scholar 

  17. Misra NN, Martynenko A, Chemat F et al (2018) Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Crit Rev Food Sci Nutr 11:1832–1863. https://doi.org/10.1080/10408398.2017.1287660

    Article  CAS  Google Scholar 

  18. Misra NN, Martynenko A (2021) Multipin dielectric barrier discharge for drying of foods and biomaterials. Innov Food Sci Emerg Technol 70:102672. https://doi.org/10.1016/j.ifset.2021.102672

    Article  CAS  Google Scholar 

  19. Pradeep SR, Guha M (2011) Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem 4:1643–1647. https://doi.org/10.1016/j.foodchem.2010.12.047

    Article  CAS  Google Scholar 

  20. Grzegorzewski F, Rohn S, Kroh LW et al (2011) Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem 4:1145–1152. https://doi.org/10.1016/j.foodchem.2010.03.104

    Article  CAS  Google Scholar 

  21. Chandrasekara A, Naczk M, Shahidi F (2012) Effect of processing on the antioxidant activity of millet grains. Food Chem 1:1–9. https://doi.org/10.1016/j.foodchem.2011.09.043

    Article  CAS  Google Scholar 

  22. Kheto A, Mallik A, Sehrawa R (2023) Atmospheric cold plasma induced nutritional & anti-nutritional, molecular modifications and in-vitro protein digestibility of guar seed (Cyamopsis tetragonoloba L) flour. Food Res Int 168:112790. https://doi.org/10.1016/j.foodres.2023.112790

    Article  CAS  PubMed  Google Scholar 

  23. Sharma K, Kaur R, Kumar S et al (2023) Saponins: a concise review on food related aspects, applications and health implications. Food Chem Adv 2:100191. https://doi.org/10.1016/j.focha.2023.100191

    Article  Google Scholar 

  24. Hassan ZM, Sebola NA, Mabelebele M (2020) Assessment of the phenolic compounds of pearl and finger millets obtained from South Africa and Zimbabwe. Food Sci Nut 8(9):4888–4896. https://doi.org/10.1002/fsn3.1778

    Article  CAS  Google Scholar 

  25. Dharini M, Jaspin S, Mahendran R (2023) Cold plasma bubbling: impact on safety, physicochemical properties, and nutritional quality of sesame milk. Food Bioprod Proc 139:109–120. https://doi.org/10.1016/j.fbp.2023.03.005

    Article  CAS  Google Scholar 

  26. Sarkar A, Niranjan T, Patel G et al (2023) Impact of cold plasma treatment on nutritional, antinutritional, functional, thermal, rheological, and structural properties of pearl millet flour. J Food Proc Eng 5:14317. https://doi.org/10.1111/jfpe.14317

    Article  CAS  Google Scholar 

  27. Mollakhalili-Meybodi N, Yousefi M, Nematollahi A et al (2021) Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. Eur Food Res Technol 7:1579–1594. https://doi.org/10.1007/s00217-021-03750-w

    Article  CAS  Google Scholar 

  28. Segat A, Misra NN, Cullen PJ et al (2015) Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innov Food Sci Emerg Technol 29:247–254. https://doi.org/10.1016/j.ifset.2015.03.014

    Article  CAS  Google Scholar 

  29. Chandra S, Singh S, Kumari D (2015) Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. J Food Sci Technol 6:3681–3688. https://doi.org/10.1007/s13197-014-1427-2

    Article  CAS  Google Scholar 

  30. Bahrami N, Bayliss D, Chope G et al (2016) Cold plasma: a new technology to modify wheat flour functionality. Food Chem 202:247–253. https://doi.org/10.1016/j.foodchem.2016.01.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaple S, Sarangapani C, Jones J et al (2020) Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L) grain and wheat flour. Innov Food Sci Emerg Technol 66:102529. https://doi.org/10.1016/j.ifset.2020.102529

    Article  CAS  Google Scholar 

  32. Pal P, Kaur P, Singh N et al (2016) Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Res Int 81:50–57. https://doi.org/10.1016/j.foodres.2015.12.019

    Article  CAS  Google Scholar 

  33. Lokeswari R, Sharanyakanth PS, Jaspin S et al (2021) Cold plasma effects on changes in physical, nutritional, hydration, and pasting properties of pearl millet (Pennisetum Glaucum). IEEE Trans Plasma Sci 5:1745–1751. https://doi.org/10.1109/TPS.2021.3074441

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided for this research by the SERB Core- Research Grant (File No.: CRG/2020/002551), DST, Government of India. Authors, Khalid and Misra are supported by Taif University Researchers Supporting Project (TURSP-HC2024/2), Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

S.J.: Conceptualization, Methodology, Visualization, Investigation, Software, Data curation, Formal analysis, Writing – original draft. S.S.: Methodology, Investigation, Formal analysis S.S.: Methodology, Investigation, Formal analysis K.A.: Supervision, Funding acquisition, Project administration, Resources. M.D.: Conceptualization, Supervision, Funding acquisition, Project administration, Resources. N.N.M.: Software, Data curation, Formal analysis, Writing – review & editing, Resources. R.C.P.: Conceptualization, Supervision, Writing – review & editing, Funding acquisition, Project administration, Resources. All authors contributed equally to this work, including design, conception, experimentation, writing of original draft and editing.

Corresponding authors

Correspondence to NN Misra or Rama Chandra Pradhan.

Ethics declarations

Conflict of Interest

NN is associated with Ingenium Naturae Pvt Ltd, the ODM/OEM of the CP equipment used.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaddu, S., Sahoo, S., Sonkar, S. et al. Cold Plasma Treatment of Little Millet Flour: Impact on Bioactives, Antinutritional Factors and Functional Properties. Plant Foods Hum Nutr (2024). https://doi.org/10.1007/s11130-024-01171-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11130-024-01171-0

Keywords

Navigation