Skip to main content

Advertisement

Log in

Targeting Histone Modifications in Bone and Lung Metastatic Cancers

  • Cancer-induced Musculoskeletal Diseases (C Lynch and J Sterling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Breast cancer frequently metastasizes to the bone and lung, but the ability to treat metastatic tumor cells remains a pressing clinical challenge. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) have emerged as promising targets since these enzymes are aberrantly expressed in numerous cancers and regulate the expression of genes that drive tumorigenesis and metastasis. This review focuses on the abnormal expression of histone-modifying enzymes in cancers that have a high tropism for the bone and lung and explores the clinical use of histone deacetylase inhibitors for the treatment and prevention of metastasis to these sites.

Recent Findings

Preclinical studies have demonstrated that the role for HDACs is highly dependent on tumor type and stage of disease progression. HDAC inhibitors can induce apoptosis, senescence, cell differentiation, and tumor dormancy genes and inhibit angiogenesis, making these promising therapeutics for the treatment of metastatic disease. HDAC inhibitors are already FDA approved for hematologic malignancies and are in clinical trials with standard-of-care chemotherapies and targeted agents for several solid tumors, including cases of metastatic disease. However, these drugs can negatively impact bone homeostasis.

Summary

Although HDAC inhibitors are not currently administered for the treatment of bone and lung metastatic disease, preclinical studies have shown that these drugs can reduce distant metastasis by targeting molecular factors and signaling pathways that drive tumor cell dissemination to these sites. Thus, HDAC inhibitors in combination with bone protective therapies may be beneficial in the treatment of bone metastatic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article  CAS  PubMed  Google Scholar 

  2. Tarin D. Comparisons of metastases in different organs: biological and clinical implications. Clin Cancer Res. 2008;14(7):1923–5.

    Article  PubMed  Google Scholar 

  3. Johnson RW, Schipani E, Giaccia AJ. HIF targets in bone remodeling and metastatic disease. Pharmacol Ther. 2015;150:169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gok Durnali A, Paksoy Turkoz F, Ardic Yukruk F, Tokluoglu S, Yazici OK, Demirci A, et al. Outcomes of adolescent and adult patients with lung metastatic osteosarcoma and comparison of synchronous and metachronous lung metastatic groups. PLoS One. 2016;11(5):e0152621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhao X, Wen X, Wei W, Chen Y, Zhu J, Wang C. Clinical characteristics and prognoses of patients treated surgically for metastatic lung tumors. Oncotarget. 2017;8(28):46491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Coleman R. Bone targeted treatments in cancer - the story so far. J Bone Oncol. 2016;5(3):90–2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bergh J, Pritchard KI, Albain K, Anderson S. Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386(10001):1353–61.

    Article  CAS  Google Scholar 

  8. Pena RAH, et al. Overall survival in female Medicare beneficiaries with early stage breast cancer receiving bisphosphonates or denosumab. J Clin Oncol. 2018;36(15_suppl):530.

    Article  Google Scholar 

  9. Rennert G, Pinchev M, Gronich N, Saliba W, Flugelman A, Lavi I, et al. Oral bisphosphonates and improved survival of breast cancer. Clin Cancer Res. 2017;23(7):1684–9.

    Article  CAS  PubMed  Google Scholar 

  10. Suarez-Almazor ME, et al. Survival in older women with early stage breast cancer receiving low-dose bisphosphonates or denosumab. J Clin Oncol. 2020;126(17):3929–38.

    CAS  Google Scholar 

  11. Gnant M, Pfeiler G, Steger GG, Egle D, Greil R, Fitzal F, et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(3):339–51.

    Article  CAS  PubMed  Google Scholar 

  12. Coleman RE, et al. Adjuvant denosumab in early breast cancer: first results from the international multicenter randomized phase III placebo controlled D-CARE study. Lancet Oncol. 2018;36(15_suppl):501.

    Google Scholar 

  13. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    Article  CAS  PubMed  Google Scholar 

  14. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63.

    Article  CAS  PubMed  Google Scholar 

  15. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8(9):a019505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400–13.

    Article  CAS  PubMed  Google Scholar 

  17. Mahmood N, Rabbani SA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front Oncol. 2019;9:489.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8(4):a019521.

  19. Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26:5310–8.

    Article  CAS  PubMed  Google Scholar 

  20. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389(6649):349–52.

    Article  CAS  PubMed  Google Scholar 

  21. Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008;31(4):449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26:5420–32.

    Article  CAS  PubMed  Google Scholar 

  23. Jain S, Zain J. Romidepsin in the treatment of cutaneous T-cell lymphoma. J Blood Med. 2011;2:37–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247–52.

    Article  CAS  PubMed  Google Scholar 

  25. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6:a018713.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park S-Y, Kim J-S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020;52(2):204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leipe DD, Landsman D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res. 1997;25(18):3693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone deacetylases in bone development and skeletal disorders. Physiol Rev. 2015;95(4):1359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma P, Pan H, Montgomery RL, Olson EN, Schultz RM. Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc Natl Acad Sci. 2012;109(8):E481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ververis K, Karagiannis TC. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis. Am J Transl Res. 2012;4(1):24–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Müller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer - overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13(1):215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang L, Zou X, Berger AD, Twiss C, Peng Y, Li Y, et al. Increased expression of histone deacetylaces (HDACs) and inhibition of prostate cancer growth and invasion by HDAC inhibitor SAHA. Am J Transl Res. 2009;1(1):62–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer. 2008;98:604–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Mei DT, Zeng Y. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin. Biomed Pharmacother. 2016;84:284–90.

    Article  CAS  PubMed  Google Scholar 

  35. Ramakrishnan S, Ku SY, Ciamporcero E, Miles KM, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16(1):617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. McGuire JJ, Nerlakanti N, Lo CH, Tauro M, Utset-Ward TJ, Reed DR, et al. Histone deacetylase inhibition prevents the growth of primary and metastatic osteosarcoma. Int J Cancer. 2020;147(10):2811–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caslini C, Hong S, Ban YJ, Chen XS, Ince TA. HDAC7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene. 2019;38(39):6599–614.

    Article  CAS  PubMed  Google Scholar 

  38. Raman D, Tiwari AK, Tiriveedhi V, Rhoades (Sterling) JA. Editorial: The role of breast cancer stem cells in clinical outcomes. Front Oncol. 2020;10:299.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Palazzo A, Ackerman B, Gundersen GG. Tubulin acetylation and cell motility. Nature. 2003;421(6920):230.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Huang Y, Wang Z, Wang HT, Duan B, Ye D, et al. HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Oncotarget. 2016;7(37):59388–401.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ahmed AA, Wang X, Lu Z, Goldsmith J, le XF, Grandjean G, et al. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel. Cancer Res. 2011;71(17):5806–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aldana-Masangkay GI, Sakamoto KM. The role of HDAC6 in cancer. J Biomed Biotechnol. 2011;2011:875824.

    Article  PubMed  CAS  Google Scholar 

  43. Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther. 2003;2(10):971–84.

    CAS  PubMed  Google Scholar 

  44. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, le QT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440(7088):1222–6.

    Article  CAS  PubMed  Google Scholar 

  45. Woelfle U, Cloos J, Sauter G, Riethdorf L, Jänicke F, van Diest P, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res. 2003;63(18):5679–84.

    CAS  PubMed  Google Scholar 

  46. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10(3):295–305.

    Article  CAS  PubMed  Google Scholar 

  47. Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep. 2011;9(2):46–52.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67(9):4157–63.

    Article  CAS  PubMed  Google Scholar 

  49. Lu X, Yan CH, Yuan M, Wei Y, Hu G, Kang Y. In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res. 2010;70(10):3905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dunn LK, Mohammad KS, Fournier PGJ, McKenna CR, Davis HW, Niewolna M, et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One. 2009;4(9):e6896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Reiterer M, Colaço R, Emrouznejad P, Jensen A, Rundqvist H, Johnson RS, et al. Acute and chronic hypoxia differentially predispose lungs for metastases. Sci Rep. 2019;9(1):10246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lin C-W, Wang LK, Wang SP, Chang YL, Wu YY, Chen HY, et al. Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1α/HDAC1/Slug axis. Nat Commun. 2016;7(1):13867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res. 2007;67(2):563–72.

    Article  CAS  PubMed  Google Scholar 

  54. Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2006;26(6):2019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hutt DM, Roth DM, Vignaud H, Cullin C, Bouchecareilh M. The histone deacetylase inhibitor, vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS One. 2014;9(8):e106224.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem. 2004;279(40):41966–74.

    Article  CAS  PubMed  Google Scholar 

  57. Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 2015;15:608–24.

    Article  CAS  PubMed  Google Scholar 

  58. Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G, et al. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci U S A. 2010;107(6):2485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chung YR, Kim H, Park SY, Park IA, Jang JJ, Choe JY, et al. Distinctive role of SIRT1 expression on tumor invasion and metastasis in breast cancer by molecular subtype. Hum Pathol. 2015;46(7):1027–35.

    Article  CAS  PubMed  Google Scholar 

  60. Latifkar A, et al. Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity. Dev Cell. 2019;49(3):393–408.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep. 2013;3(4):1175–86.

    Article  CAS  PubMed  Google Scholar 

  62. Jeh SU, et al. Differential expression of the sirtuin family in renal cell carcinoma: aspects of carcinogenesis and prognostic significance. Urol Oncol. 2017;35(12):675.e9–675.e15.

    Article  CAS  Google Scholar 

  63. Tan Y, Li B, Peng F, Gong G, Li N. Integrative analysis of sirtuins and their prognostic significance in clear cell renal cell carcinoma. Front Oncol. 2020;10:218.

    Article  PubMed  PubMed Central  Google Scholar 

  64. •• Leslie PL, et al. Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes. Nat Commun. 2019;10(1):4192 Examines for the first time the role for HDAC11 in tumor biology.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang N, Li Y, Zhou J. Downregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells. Oncol Lett. 2018;15(3):3719–25.

    PubMed  PubMed Central  Google Scholar 

  66. Christensen J, et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res. 2005;33(17):5458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arts J, King P, Mariën A, Floren W, Beliën A, Janssen L, et al. JNJ-26481585, a novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res. 2009;15(22):6841–51.

    Article  CAS  PubMed  Google Scholar 

  68. Chen W-Z, Shen JF, Zhou Y, Chen XY, Liu JM, Liu ZL. Clinical characteristics and risk factors for developing bone metastases in patients with breast cancer. Sci Rep. 2017;7(1):–11325.

  69. Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, et al. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep. 2020;10(1):4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haberland M, Johnson A, Mokalled MH, Montgomery RL, Olson EN. Genetic dissection of histone deacetylase requirement in tumor cells. Proc Natl Acad Sci. 2009;106(19):7751–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jurkin J, et al. Distinct and redundant functions of histone deacetylases HDAC1 and HDAC2 in proliferation and tumorigenesis. Cell Cycle (Georgetown, Tex). 2011;10(3):406–12.

    Article  CAS  Google Scholar 

  72. Vanaja GR, Ramulu HG, Kalle AM. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun Sign. 2018;16(1):20.

    Article  CAS  Google Scholar 

  73. Marmorstein R, Zhou M-M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 6(7):a018762.

  74. Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002;30(23):5036–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han N, Shi L, Guo Q, Sun W, Yu Y, Yang L, et al. HAT1 induces lung cancer cell apoptosis via up regulating Fas. Oncotarget. 2017;8(52):89970–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen L, Wei T, Si X, Wang Q, Li Y, Leng Y, et al. Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of E2F1, cyclin D1, and cyclin E1 expression. J Biol Chem. 2013;288(20):14510–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu T, et al. Epigenetically down-regulated acetyltransferase PCAF increases the resistance of colorectal cancer to 5-fluorouracil. Neoplasia (New York, NY). 2019;21(6):557–70.

    Article  CAS  Google Scholar 

  78. Yu L, et al. Identification of MYST3 as a novel epigenetic activator of ERα frequently amplified in breast cancer. Oncogene. 2016;36:2910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Simo-Riudalbas L, et al. KAT6B is a tumor suppressor histone H3 lysine 23 acetyltransferase undergoing genomic loss in small cell lung cancer. Cancer Res. 2015;75(18):3936–45.

    Article  CAS  PubMed  Google Scholar 

  80. Xiao XS, Cai MY, Chen JW, Guan XY, Kung HF, Zeng YX, et al. High expression of p300 in human breast cancer correlates with tumor recurrence and predicts adverse prognosis. Chin J Cancer Res. 2011;23(3):201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fermento ME, Gandini NA, Salomón DG, Ferronato MJ, Vitale CA, Arévalo J, et al. Inhibition of p300 suppresses growth of breast cancer. Role of p300 subcellular localization. Exp Mol Pathol. 2014;97(3):411–24.

    Article  CAS  PubMed  Google Scholar 

  82. Ring A, Nguyen C, Smbatyan G, Tripathy D, Yu M, Press M, et al. CBP/β-catenin/FOXM1 is a novel therapeutic target in triple negative breast cancer. Cancers. 2018;10(12):525.

    Article  CAS  PubMed Central  Google Scholar 

  83. Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J. 2000;19(8):1839–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, et al. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res. 2009;69(13):5364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jang GB, Kim JY, Cho SD, Park KS, Jung JY, Lee HY, et al. Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Sci Rep. 2015;5:12465.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li X, Yang J, Bao M, Zeng K, Fu S, Wang C, et al. Wnt signaling in bone metastasis: mechanisms and therapeutic opportunities. Life Sci. 2018;208:33–45.

    Article  CAS  PubMed  Google Scholar 

  87. Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG, Weiss SJ. Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic breast cancer 1, early onset (BRCA1) repression. Proc Natl Acad Sci U S A. 2012;109(41):16654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Johnson RW, Merkel AR, Page JM, Ruppender NS, Guelcher SA, Sterling JA. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis. 2014;31(8):945–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang Y, Singhal U, Qiao Y, Kasputis T, Chung JS, Zhao H, et al. Wnt signaling drives prostate cancer bone metastatic tropism and invasion. Transl Oncol. 2020;13(4):100747.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer. 2004;101(6):1345–56.

    Article  CAS  PubMed  Google Scholar 

  91. Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017;19(10):1274–85.

    Article  CAS  PubMed  Google Scholar 

  92. Wapenaar H, Dekker FJJCE. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics. 2016;8(1):59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Plumb JA, Finn PW, Williams RJ, Bandara MJ, Romero MR, Watkins CJ, et al. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther. 2003;2(8):721–8.

    CAS  PubMed  Google Scholar 

  94. Crisanti MC, Wallace AF, Kapoor V, Vandermeers F, Dowling ML, Pereira LP, et al. The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells in vitro and in vivo with particular efficacy for small cell lung cancer. Mol Cancer Ther. 2009;8(8):2221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A. 1998;95(6):3003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20(24):6969–78.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tatamiya T, et al. Isozyme-selective activity of the HDAC inhibitor MS-275. Cancer Res. 2004;64(7 Supplement):567.

    Google Scholar 

  98. Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002;62(17):4916–21.

    CAS  PubMed  Google Scholar 

  99. Ghobrial IM. Myeloma as a model for the process of metastasis: implications for therapy. Blood. 2012;120(1):20–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Duvic M, Vu J. Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs. 2007;16(7):1111–20.

    Article  CAS  PubMed  Google Scholar 

  101. Buchwald M, Kramer OH, Heinzel T. HDACi--targets beyond chromatin. Cancer Lett. 2009;280(2):160–7.

    Article  CAS  PubMed  Google Scholar 

  102. Zucchetti B, Shimada AK, Katz A, Curigliano G. The role of histone deacetylase inhibitors in metastatic breast cancer. Breast. 2019;43:130–4.

    Article  PubMed  Google Scholar 

  103. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, et al. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res. 2008;14(21):7138–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Modesitt SC, Sill M, Hoffman JS, Bender DP. A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;109(2):182–6.

    Article  CAS  PubMed  Google Scholar 

  105. Blumenschein GR Jr, Kies MS, Papadimitrakopoulou VA, Lu C, Kumar AJ, Ricker JL, et al. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Investig New Drugs. 2008;26(1):81–7.

    Article  CAS  Google Scholar 

  106. Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Hardwick JS, et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol. 2009;27(12):2052–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bradley D, Rathkopf D, Dunn R, Stadler WM, Liu G, Smith DC, et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862). Cancer. 2009;115(23):5541–9.

    Article  CAS  PubMed  Google Scholar 

  108. Ibrahim N, Buchbinder EI, Granter SR, Rodig SJ, Giobbie-Hurder A, Becerra C, et al. A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med. 2016;5(11):3041–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rathkopf DE, Picus J, Hussain A, Ellard S, Chi KN, Nydam T, et al. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2013;72(3):537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haigentz M Jr, Kim M, Sarta C, Lin J, Keresztes RS, Culliney B, et al. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncol. 2012;48(12):1281–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Bonneterre J, Mercier M. Response to chemotherapy after relapse in patients with or without previous adjuvant chemotherapy for breast cancer. Cancer Treat Rev. 1993;19:21–30.

    Article  PubMed  Google Scholar 

  112. Hull EE, Montgomery MR, Leyva KJ. HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. Biomed Res Int. 2016;2016:8797206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Fantin VR, Richon VM. Mechanisms of resistance to histone deacetylase inhibitors and their therapeutic implications. Clin Cancer Res. 2007;13(24):7237–42.

    Article  CAS  PubMed  Google Scholar 

  114. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004;23(16):2934–49.

    Article  CAS  PubMed  Google Scholar 

  115. Robey RW, Chakraborty AR, Basseville A, Luchenko V, Bahr J, Zhan Z, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm. 2011;8(6):2021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hurtubise A, Momparler RL. Effect of histone deacetylase inhibitor LAQ824 on antineoplastic action of 5-aza-2′-deoxycytidine (decitabine) on human breast carcinoma cells. Cancer Chemother Pharmacol. 2006;58(5):618–25.

    Article  CAS  PubMed  Google Scholar 

  117. Dowdy SC, Jiang S, Zhou XC, Hou X, Jin F, Podratz KC, et al. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol Cancer Ther. 2006;5(11):2767–76.

    Article  CAS  PubMed  Google Scholar 

  118. Owonikoko TK, Ramalingam SS, Kanterewicz B, Balius TE, Belani CP, Hershberger PA. Vorinostat increases carboplatin and paclitaxel activity in non-small-cell lung cancer cells. Int J Cancer. 2010;126(3):743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 2003;63(21):7291–300.

    CAS  PubMed  Google Scholar 

  120. Yin L, Liu Y, Peng Y, Peng Y, Yu X, Gao Y, et al. PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells. J Exp Clin Cancer Res. 2018;37(1):153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Beider K, Bitner H, Voevoda-Dimenshtein V, Rosenberg E, Sirovsky Y, Magen H, et al. The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochem Pharmacol. 2019;168:412–28.

    Article  CAS  PubMed  Google Scholar 

  122. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50.

    Article  CAS  PubMed  Google Scholar 

  123. Wang J, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87.

    Article  CAS  PubMed  Google Scholar 

  124. Masuda T, Endo M, Yamamoto Y, Odagiri H, Kadomatsu T, Nakamura T, et al. ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling. Sci Rep. 2015;5:9170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.

    Article  CAS  PubMed  Google Scholar 

  126. Gravina GL, Mancini A, Muzi P, Ventura L, Biordi L, Ricevuto E, et al. CXCR4 pharmacogical inhibition reduces bone and soft tissue metastatic burden by affecting tumor growth and tumorigenic potential in prostate cancer preclinical models. Prostate. 2015;75(12):1227–46.

    Article  CAS  PubMed  Google Scholar 

  127. D'Alterio C, et al. Inhibition of stromal CXCR4 impairs development of lung metastases. Cancer Immunol Immunother. 2012;61(10):1713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Martinez-Ordoñez A, Seoane S, Cabezas P, Eiro N, Sendon-Lago J, Macia M, et al. Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene. 2018;37(11):1430–44.

    Article  PubMed  CAS  Google Scholar 

  129. Mandawat A, Fiskus W, Buckley KM, Robbins K, Rao R, Balusu R, et al. Pan-histone deacetylase inhibitor panobinostat depletes CXCR4 levels and signaling and exerts synergistic antimyeloid activity in combination with CXCR4 antagonists. Blood. 2010;116(24):5306–15.

    Article  CAS  PubMed  Google Scholar 

  130. Duong V, Licznar A, Margueron R, Boulle N, Busson M, Lacroix M, et al. ERα and ERβ expression and transcriptional activity are differentially regulated by HDAC inhibitors. Oncogene. 2006;25(12):1799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Munshi A, et al. Activation of ER-α by DNMT and HDAC inhibitors radiosensitizes ER-α negative breast. Cancer Cells. 2007;67(9 Supplement):3104.

    Google Scholar 

  132. Sharma D, Blum J, Yang X, Beaulieu N, Macleod AR, Davidson NE. Release of methyl CpG binding proteins and histone deacetylase 1 from the Estrogen receptor alpha (ER) promoter upon reactivation in ER-negative human breast cancer cells. Mol Endocrinol. 2005;19(7):1740–51.

    Article  CAS  PubMed  Google Scholar 

  133. Sharma D, Saxena NK, Davidson NE, Vertino PM. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res. 2006;66(12):6370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fan J, Yin WJ, Lu JS, Wang L, Wu J, Wu FY, et al. ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol. 2008;134(8):883–90.

    Article  CAS  PubMed  Google Scholar 

  135. Bossard C, Busson M, Vindrieux D, Gaudin F, Machelon V, Brigitte M, et al. Potential role of estrogen receptor beta as a tumor suppressor of epithelial ovarian cancer. PLoS One. 2012;7(9):e44787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pinton G, Nilsson S, Moro L. Targeting estrogen receptor beta (ERβ) for treatment of ovarian cancer: importance of KDM6B and SIRT1 for ERβ expression and functionality. Oncogenesis. 2018;7(2):15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Paruthiyil S, et al. Estrogen receptor β inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res. 2004;64(1):423–8.

    Article  CAS  PubMed  Google Scholar 

  138. Chaurasiya S, Widmann S, Botero C, Lin CY, Gustafsson JÅ, Strom AM. Estrogen receptor β exerts tumor suppressive effects in prostate cancer through repression of androgen receptor activity. PLoS One. 2020;15(5):e0226057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhao L, et al. Pharmacological activation of estrogen receptor beta augments innate immunity to suppress cancer metastasis. Proc Natl Acad Sci U S A. 2018;115(16):E3673–81 Demonstrates that targeting ERβ may be effective even when ERα has become downregulated, as frequently occurs in recurrent metastatic breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schrijver WAME, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ. Receptor conversion in distant breast cancer metastases: a systematic review and meta-analysis. JNCI: J Natl Cancer Instit. 2018;110(6):568–80.

    Article  Google Scholar 

  141. Van Poznak C, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2015;33(24):2695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Thomas S, Thurn KT, Raha P, Chen S, Munster PN. Efficacy of histone deacetylase and estrogen receptor inhibition in breast cancer cells due to concerted down regulation of Akt. PLoS One. 2013;8(7):e68973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Testa JR, Tsichlis PN. AKT signaling in normal and malignant cells. Oncogene. 2005;24(50):7391–3.

    Article  CAS  PubMed  Google Scholar 

  144. Raha P, Thomas S, Thurn KT, Park J, Munster PN. Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Res. 2015;17(1):26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M, et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2016;22(16):4119–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9(1):6136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Llopiz D, Ruiz M, Villanueva L, Iglesias T, Silva L, Egea J, et al. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor belinostat in a murine hepatocellular carcinoma model. Cancer Immunol Immunother. 2019;68(3):379–93.

    Article  CAS  PubMed  Google Scholar 

  148. Pili R, et al. Immunomodulation by entinostat in renal cell carcinoma patients receiving high-dose interleukin 2: a multicenter, single-arm, phase I/II trial (NCI-CTEP#7870). Clin Cancer Res. 2017;23(23):7199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Johnson DB, Reynolds KL, Sullivan RJ, Balko JM, Patrinely JR, Cappelli LC, et al. Immune checkpoint inhibitor toxicities: systems-based approaches to improve patient care and research. Lancet Oncol. 2020;21(8):e398–404.

    Article  CAS  PubMed  Google Scholar 

  150. Subramanian S, et al. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel, Switzerland). 2010;3(9):2751–67.

    Article  CAS  Google Scholar 

  151. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.

    Article  PubMed Central  CAS  Google Scholar 

  152. Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(17):2128–35.

    Article  CAS  Google Scholar 

  153. Connolly RM, et al. Combination epigenetic therapy in advanced breast cancer with 5-azacitidine and entinostat: a Phase II National Cancer Institute/Stand Up to Cancer Study. Clin Cancer Res. 2017;23(11):2691–701 Demonstrates that treatment with entinostat in combination with 5-azacitidine may increase expression of ER, suggesting re-introduction of endocrine therapy may be beneficial in some patients.

    Article  CAS  PubMed  Google Scholar 

  154. Bishton MJ, Harrison SJ, Martin BP, McLaughlin N, James C, Josefsson EC, et al. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood. 2011;117(13):3658–68.

    Article  CAS  PubMed  Google Scholar 

  155. Oner N, Kaya M, Karasalihoglu S, Karaca H, Celtik C, Tutunculer F. Bone mineral metabolism changes in epileptic children receiving valproic acid. J Paediatr Child Health. 2004;40(8):470–3.

    Article  CAS  PubMed  Google Scholar 

  156. Sato Y, Kondo I, Ishida S, Motooka H, Takayama K, Tomita Y, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology. 2001;57(3):445–9.

    Article  CAS  PubMed  Google Scholar 

  157. Pratap J, Akech J, Wixted JJ, Szabo G, Hussain S, McGee-Lawrence ME, et al. The histone deacetylase inhibitor, vorinostat, reduces tumor growth at the metastatic bone site and associated osteolysis, but promotes normal bone loss. Mol Cancer Ther. 2010;9(12):3210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. McGee-Lawrence ME, McCleary-Wheeler AL, Secreto FJ, Razidlo DF, Zhang M, Stensgard BA, et al. Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone. 2011;48(5):1117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu S, de Veirman K, Evans H, Santini GC, Vande Broek I, Leleu X, et al. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin. 2013;34(5):699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jilka RL, O'Brien CA, Ali AA, Roberson PK, Weinstein RS, Manolagas SC. Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone. 2009;44(2):275–86.

    Article  CAS  PubMed  Google Scholar 

  161. Gao Y, Wu X, Terauchi M, Li JY, Grassi F, Galley S, et al. T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab. 2008;8(2):132–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Senn SM, Kantor S, Poulton IJ, Morris MJ, Sims NA, O’Brien TJ, et al. Adverse effects of valproate on bone: defining a model to investigate the pathophysiology. Epilepsia. 2010;51(6):984–93.

    Article  CAS  PubMed  Google Scholar 

  163. Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46.

    Article  CAS  PubMed  Google Scholar 

  164. Scagliotti GV, Hirsh V, Siena S, Henry DH, Woll PJ, Manegold C, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J Thorac Oncol. 2012;7(12):1823–9.

    Article  CAS  PubMed  Google Scholar 

  165. Sonnemann J, Bumbul B, Beck JF. Synergistic activity of the histone deacetylase inhibitor suberoylanilide hydroxamic acid and the bisphosphonate zoledronic acid against prostate cancer cells in vitro. Mol Cancer Ther. 2007;6(11):2976–84.

    Article  CAS  PubMed  Google Scholar 

  166. Bruzzese F, Pucci B, Milone MR, Ciardiello C, Franco R, Chianese MI, et al. Panobinostat synergizes with zoledronic acid in prostate cancer and multiple myeloma models by increasing ROS and modulating mevalonate and p38-MAPK pathways. Cell Death Dis. 2013;4:e878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Milone MR, Pucci B, Bruzzese F, Carbone C, Piro G, Costantini S, et al. Acquired resistance to zoledronic acid and the parallel acquisition of an aggressive phenotype are mediated by p38-MAP kinase activation in prostate cancer cells. Cell Death Dis. 2013;4(5):e641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Boluk A, Guzelipek M, Savli H, Temel I, Ozişik HI, Kaygusuz A. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004;50(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  169. Sheth RD, Wesolowski CA, Jacob JC, Penney S, Hobbs GR, Riggs JE, et al. Effect of carbamazepine and valproate on bone mineral density. J Pediatr. 1995;127(2):256–62.

    Article  CAS  PubMed  Google Scholar 

  170. Greenspan SL, Harris ST, Bone H, Miller PD, Orwoll ES, Watts NB, et al. Bisphosphonates: safety and efficacy in the treatment and prevention of osteoporosis. Am Fam Physician. 2000;61(9):2731–6.

    CAS  PubMed  Google Scholar 

  171. Pazianas M, Cooper C, Ebetino FH, Russell RG. Long-term treatment with bisphosphonates and their safety in postmenopausal osteoporosis. Ther Clin Risk Manag. 2010;6:325–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Langley RR, Fidler IJ. The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 2011;128(11):2527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pantel K, Alix-Panabieres C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009;6(6):339–51.

    Article  CAS  PubMed  Google Scholar 

  174. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004;4(6):448–56.

    Article  CAS  PubMed  Google Scholar 

  175. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302–12.

    Article  CAS  PubMed  Google Scholar 

  176. Price TT, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18(10):1078–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat Cell Biol. 2013;15(11):1351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One. 2012;7(4):e35569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chow DC, Wenning LA, Miller WM, Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I Krogh’s model. Biophys J. 2001;81(2):675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. JNCI: J Natl Cancer Instit. 2001;93(4):266–76.

    Article  Google Scholar 

  184. Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, et al. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci. 2019;110(8):2493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

R.W.J. and C.E. are supported by DoD Breakthrough Award W81XWH-18-1-0029 (R.W.J.), and R.W.J. is supported by NIH award R00CA194198 (R.W.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachelle W. Johnson.

Ethics declarations

Conflict of Interest

Rachelle Johnson and Courtney Edwards declare no conflict of interest. Both authors are supported by a DoD grant; Dr. Johnson is supported by an NIH grant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer-induced Musculoskeletal Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, C.M., Johnson, R.W. Targeting Histone Modifications in Bone and Lung Metastatic Cancers. Curr Osteoporos Rep 19, 230–246 (2021). https://doi.org/10.1007/s11914-021-00670-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00670-2

Keywords

Navigation