Skip to main content

Advertisement

Log in

Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Any additional data could be available from the correspond-ing author upon request.

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:359–86.

    Article  Google Scholar 

  2. Karati D, Shaoo KK, Mahadik KR, Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: medicinal chemistry perspective. Results Chem. 2022. https://doi.org/10.1016/j.rechem.2022.100532.

    Article  Google Scholar 

  3. Karati D, Mahadik KR, Trivedi P, Kumar D. Molecular insights on selective and specific inhibitors of cyclin dependent kinase 9 enzyme (CDK9) for the purpose of cancer therapy. Anticancer Agents Med Chem. 2022;22:1–20.

    Google Scholar 

  4. Karati D, Mahadik KR, Trivedi P, Kumar D. Alkylating agents, the road less traversed, changing anticancer therapy. Anticancer Agents Med Chem. 2021;21:1–7.

    Google Scholar 

  5. Karati D, Mahadik KR, Trivedi P, Kumar D. The emerging role of janus kinase inhibitors in the treatment of cancer: current cancer drug. Targets. 2022;22(3):221–33.

    CAS  Google Scholar 

  6. Godman CA, Joshi R, Tierney BR, Greenspan E, Rasmussen TP, Wang HW, Shin DG, Rosenberg DW, Giardina C. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on wnt and vitamin D signaling. Cancer Biol Ther. 2008;7:1570–80.

    Article  CAS  PubMed  Google Scholar 

  7. Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA. 2004;101:18030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ganai SA. HDACs and their distinct classes. In: Ganai SA, editor. Histone deacetylase inhibitors—Epidrugs for neurological disorders. Singapore: Springer; 2019. p. 2–25.

    Chapter  Google Scholar 

  10. Zagni C, Floresta G, Monciino G, et al. The search for potent, small-molecule HDACIs in cancer treatment: a decade after vorinostat. Med Res Rev. 2017;37(6):1373–428.

    Article  PubMed  Google Scholar 

  11. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91.

    Article  CAS  PubMed  Google Scholar 

  12. Zwergel C, Stazi G, Valente S, et al. histone deacetylase inhibitors: updated studies in various epigenetic-related diseases. J Clin Epigenetics. 2016;2:1–7.

    Google Scholar 

  13. Lagger G, O’Carroll D, Rembold M, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 2002;21(11):2672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–9.

    Article  CAS  PubMed  Google Scholar 

  15. Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21(14):1790–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marchion DC, Bicaku E, Turner JG, et al. HDAC2 regulates chromatin plasticity and enhances DNA vulnerability. Mol Cancer Ther. 2009;8(4):794–801.

    Article  CAS  PubMed  Google Scholar 

  17. Bhaskara S, Chyla BJ, Amann JM, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30(1):61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marks PA. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs. 2010;19(9):1049–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen B, Cepko CL. HDAC4 regulates neuronal survival in normal and diseased retinas. Science. 2009;323(5911):256–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Williams AH, Valdez G, Moresi V, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009;326(5959):1549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang S, Young BD, Li S, et al. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell. 2006;126(2):321–34.

    Article  CAS  PubMed  Google Scholar 

  22. Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA. 2003;100(8):4389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parmigiani RB, Xu WS, Venta-Perez G, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci USA. 2008;105(28):9633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Yuan Z, Zhang Y, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell. 2007;27(2):197–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18(5):601–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003;115(6):727–38.

    Article  CAS  PubMed  Google Scholar 

  27. Boyault C, Gilquin B, Zhang Y, et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 2006;25(14):3357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Villagra A, Cheng F, Wang HW, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol. 2009;10(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee S, Adhikari N, Amin SA, Jha T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: an overview. Eur J Med Chem. 2008. https://doi.org/10.1016/j.ejmech.2018.12.039.

    Article  PubMed  Google Scholar 

  30. Chakrabarti A, Oehme I, Witt O, Oliveira G, Sippl W, Romier C, Pierce RJ, Jung M. HDAC8: a multifaceted target for therapeutic interventions trends pharmacol. Sci. 2015;36:481–92.

    CAS  Google Scholar 

  31. Autin P, Blanquart C, Fradin D. Epigenetic drugs for cancer and microRNAs: a focus on histone deacetylase inhibitors. Cancers. 2019;11:1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer therapy with HDAC inhibitors: mechanism-based combination strategies and future perspectives. Cancers. 2021;13:634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim MS, Kwon HJ, Lee YM, Baek JH, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7:437–43.

    Article  PubMed  Google Scholar 

  34. Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, et al. The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Dev Cell. 2002;3:903–10.

    Article  CAS  PubMed  Google Scholar 

  35. Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 2008;27:1017–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92:1300–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne AP, et al. Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer. 2006;95:1056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adams H, Fritzsche FR, Dirnhofer S, Kristiansen G, Tzankov A. Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin’s lymphoma. Expert Opin Ther Targets. 2010;14:577–84.

    Article  CAS  PubMed  Google Scholar 

  39. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408:377–81.

    Article  CAS  PubMed  Google Scholar 

  40. Siddiqui H, Solomon DA, Gunawardena RW, Wang Y, Knudsen ES. Histone deacetylation of RB-responsive promoters: requisite for specific gene repression but dispensable for cell cycle inhibition. Mol Cell Biol. 2003;23:7719–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cras A, Darsin-Bettinger D, Balitrand N, Cassinat B, Soulie A, Toubert ME, et al. Epigenetic patterns of the retinoic acid receptor beta2 promoter in retinoic acid-resistant thyroid cancer cells. Oncogene. 2007;26:4018–24.

    Article  CAS  PubMed  Google Scholar 

  42. Park SY, Kim JS. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020;52(2):204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ganai SA. Strong involvement of classical histone deacetylases and mechanistically distinct sirtuins in bellicose cancers. In: Ganai SA, editor. histone deacetylase inhibitors in combinatorial anticancer therapy. Singapore: Springer; 2020. p. 75–95.

    Chapter  Google Scholar 

  44. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, Hero B, et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res. 2009;15:91–9.

    Article  CAS  PubMed  Google Scholar 

  45. Vanaja GR, Ramulu HG, Kalle AM. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6. Cell Commun Signal. 2018;16:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abbas A, Gupta S. The role of histone deacetylases in prostate cancer. Epigenetics. 2008;3(6):300–9.

    Article  PubMed  Google Scholar 

  47. Deubzer HE, Schier MC, Oehme I, Lodrini M, Haendler B, Sommer A, et al. HDAC11 is a novel drug target in carcinomas. Int J Cancer. 2013;132:2200–8.

    Article  CAS  PubMed  Google Scholar 

  48. Thole TM, Lodrini M, Fabian J, Wuenschel J, Pfeil S, Hielscher T, et al. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death Dis. 2017;8:e2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA. 2004;101:15064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu J, Du C, Lv Z, Ding C, Cheng J, Xie H, et al. The up-regulation of histone deacetylase 8 promotes proliferation and inhibits apoptosis in hepatocellular carcinoma. Dig Dis Sci. 2013;58:3545–53.

    Article  CAS  PubMed  Google Scholar 

  51. Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, et al. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep. 2011;25:1677–81.

    CAS  PubMed  Google Scholar 

  52. Wickstrom SA, Masoumi KC, Khochbin S, Fassler R, Massoumi R. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J. 2010;29:131–44.

    Article  PubMed  Google Scholar 

  53. Song C, Zhu S, Wu C, Kang J. Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J Biol Chem. 2013;288:28021–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer. 2004;112:26–32.

    Article  CAS  PubMed  Google Scholar 

  55. Jin Z, Jiang W, Jiao F, Guo Z, Hu H, Wang L, et al. Decreased expression of histone deacetylase 10 predicts poor prognosis of gastric cancer patients. Int J Clin Exp Pathol. 2014;7:5872–9.

    PubMed  PubMed Central  Google Scholar 

  56. Chaiyawat P, Pruksakorn D, Phanphaisarn A, Teeyakasem P, Klangjorhor J, Settakorn J. Expression patterns of class I histone deacetylases in osteosarcoma: a novel prognostic marker with potential therapeutic implications. Mod Pathol. 2018;31:264–74.

    Article  CAS  PubMed  Google Scholar 

  57. Moreno DA, Scrideli CA, Cortez MA, De Paula Queiroz R, Valera ET, Da Silva Silveira V, et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010;150:665–73.

    Article  CAS  PubMed  Google Scholar 

  58. Deng R, Zhang P, Liu W, Zeng X, Ma X, Shi L, Wang T, Yin Y, Chang W, Zhang P, Wang G, Tao K. HDAC is indispensable for IFN-γ-induced B7–H1 expression in gastric cancer. Clin Epigenetics. 2018;10:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kwon Y, Kim Y, Jung HS, Jeoung D. Role of HDAC3-miRNA-CAGE network in anti-cancer drug-resistance. Int J Mol Sci. 2019;20:51.

    Article  Google Scholar 

  60. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.

    Article  CAS  PubMed  Google Scholar 

  61. Miller AT, Witter DJ, Belvedere S. Histone deacetylase inhibitors. J Med Chem. 2003;46(24):5098–116.

    Article  Google Scholar 

  62. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  63. Wang H, Dymock BW. New patented histone deacetylase inhibitors. Expert Opin Ther Pat. 2009;19(12):1727–57.

    Article  CAS  PubMed  Google Scholar 

  64. Schemies J, Sippl W, Jung M. Histone deacetylase inhibitors that target tubulin. Cancer Lett. 2009;280(2):222–32.

    Article  CAS  PubMed  Google Scholar 

  65. Varghese S, Senanayake T, Murray-Stewart T, et al. Polyaminohydroxamic acids and polyaminobenzamides as isoform selective histone deacetylase inhibitors. J Med Chem. 2008;51(8):2447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marson C. Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer. Anticancer Agents Med Chem. 2009;9(6):661–92.

    Article  CAS  PubMed  Google Scholar 

  67. Butler KV, Kozikowski AP. Chemical origins of isoform selectivity in histone deacetylase inhibitors. Curr Pharm Des. 2008;14(6):505–28.

    Article  CAS  PubMed  Google Scholar 

  68. Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett. 2009;280(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  69. Luan Y, Li J, Bernatchez JA, Li R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J Med Chem. 2019;62(7):3171–83.

    Article  CAS  PubMed  Google Scholar 

  70. Guha M. HDAC inhibitors still need a home run, despite recent approval. Nat Rev Drug Discov. 2015;14(4):225–6.

    Article  CAS  PubMed  Google Scholar 

  71. Rosik L, Niegisch G, Fischer U, et al. Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells. Cancer Biol Ther. 2014;15(6):742–57.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ganai SA. Different groups of HDAC inhibitors based on various classifications. In: Ganai SA, editor. Histone deacetylase inhibitors—Epidrugs for neurological disorders. Singapore: Springer; 2019. p. 33–8.

    Chapter  Google Scholar 

  73. Hontecillas-Prieto L, Flores-Campos R, Silver A, De Álava E, Hajji N, García-Domínguez DJ. Synergistic enhancement of cancer therapy using HDAC inhibitors: opportunity for clinical trials. Front Genet. 2020;11:578011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Munster PN, Marchion D, Thomas S, Egorin M, Minton S, Springett G, et al. Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br J Cancer. 2009;101:1044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem. 2014;62:11–33.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C. HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol Cancer Ther. 2019;18:900–8.

    Article  CAS  PubMed  Google Scholar 

  77. Bressi JC, Jennings AJ, Skene R, et al. Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg Med Chem Lett. 2010;20(10):3142–5.

    Article  CAS  PubMed  Google Scholar 

  78. Marek M, Shaik TB, Heimburg T, et al. Characterization of histone deacetylase 8 (HDAC8) selective inhibition reveals specific active site structural and functional determinants. J Med Chem. 2018;61(22):10000–16.

    Article  CAS  PubMed  Google Scholar 

  79. Evrot E, Ebel N, Romanet V, et al. JAK1/2 and pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease. Clin Cancer Res. 2013;19(22):6230–41.

    Article  CAS  PubMed  Google Scholar 

  80. Rahmani M, Aust MM, Benson EC, et al. PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res. 2014;20(18):4849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang JM, Sheard MA, Ji L, et al. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol Cancer Ther. 2010;9(12):3289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Booth L, Roberts JL, Sander C, et al. The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo. Oncotarget. 2017;8(10):16367–86.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tavallai S, Hamed HA, Grant S, et al. Pazopanib and HDAC inhibitors interact to kill sarcoma cells. Cancer Biol Ther. 2014;15(5):578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang J, Pursell NW, Samson ME, et al. Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion. Mol Cancer Ther. 2013;12(6):925–36.

    Article  CAS  PubMed  Google Scholar 

  85. Hesham HM, Lasheen DS, Abouzid KAM. Chimeric HDAC inhibitors: comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev. 2018;38(6):2058–109.

    Article  PubMed  Google Scholar 

  86. Zhang K, Lai F, Lin S, et al. Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases. J Med Chem. 2019;62(15):6992–7014.

    Article  CAS  PubMed  Google Scholar 

  87. Zang J, Liang X, Huang Y, et al. Discovery of novel pazopanib-based HDAC and VEGFR dual inhibitors targeting cancer epigenetics and angiogenesis simultaneously. J Med Chem. 2018;61(12):5304–22.

    Article  CAS  PubMed  Google Scholar 

  88. Yao L, Mustafa N, Tan EC, et al. Design and synthesis of ligand efficient dual inhibitors of janus kinase (JAK) and histone deacetylase (HDAC) based on ruxolitinib and vorinostat. J Med Chem. 2017;60(20):8336–57.

    Article  CAS  PubMed  Google Scholar 

  89. Yang EG, Mustafa N, Tan EC, et al. Design and synthesis of janus kinase 2 (JAK2) and histone deacetlyase (HDAC) bispecific inhibitors based on pacritinib and evidence of dual pathway inhibition in hematological cell lines. J Med Chem. 2016;59(18):8233–62.

    Article  CAS  PubMed  Google Scholar 

  90. Liang X, Zang J, Li X, et al. Discovery of novel janus kinase (JAK) and histone deacetylase (HDAC) dual inhibitors for the treatment of hematological malignancies. J Med Chem. 2019;62(8):3898–923.

    Article  CAS  PubMed  Google Scholar 

  91. Li Y, Luo X, Guo Q, et al. Discovery of N1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7 H-pyrrolo[2,3- d]pyrimidin-2-yl)amino)phenyl)- N8-hydroxyoctanediamide as a novel inhibitor targeting cyclin-dependent kinase 4/9 (CDK4/9) and histone deacetlyase1 (HDAC1) against malignant cancer. J Med Chem. 2018;61(7):3166–92.

    Article  CAS  PubMed  Google Scholar 

  92. Huang Y, Dong G, Li H, et al. Discovery of janus kinase 2 (JAK2) and histone deacetylase (HDAC) dual inhibitors as a novel strategy for the combinational treatment of leukemia and invasive fungal infections. J Med Chem. 2018;61(14):6056–74.

    Article  CAS  PubMed  Google Scholar 

  93. To KKW, Fu LW. CUDC-907, a dual HDAC and PI3K inhibitor, reverses platinum drug resistance. Invest New Drugs. 2018;36(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  94. Chu-Farseeva YY, Mustafa N, Poulsen A, et al. Design and synthesis of potent dual inhibitors of JAK2 and HDAC based on fusing the pharmacophores of XL019 and vorinostat. Eur J Med Chem. 2018;158:593–619.

    Article  CAS  PubMed  Google Scholar 

  95. Lu D, Yan J, Wang L, et al. Design, synthesis, and biological evaluation of the first c-Met/HDAC inhibitors based on pyridazinone derivatives. ACS Med Chem Lett. 2017;8(8):830–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cai X, Zhai HX, Wang J, Forrester J, Qu H, Yin L, Lai CJ, Bao R, Qian C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)- N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem. 2010;53:2000e2009.

    Article  Google Scholar 

  97. Peng FW, Wu TT, Ren ZW, Xue JY, Shi L. Hybrids from 4- anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg Med Chem Lett. 2015;25:5137e5141.

    Article  Google Scholar 

  98. Peng FW, Xuan J, Wu TT, Xue JY, Ren ZW, Liu DK, Wang XQ, Chen XH, Zhang JW, Xu YG, Shi L. Design, synthesis and biological evaluation of Nphenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur J Med Chem. 2016;109:1e12.

    Article  Google Scholar 

  99. Liang X, Zang J, Li X, Tang S, Huang M, Geng M, Chou CJ, Li C, Cao Y, Xu W, Liu H, Zhang Y. Discovery of novel janus kinase (JAK) and histone deacetylase (HDAC) dual inhibitors for the treatment of hematological malignancies. J Med Chem. 2019;62:3898e3923.

    Article  Google Scholar 

  100. Lu D, Yan J, Wang L, Liu H, Zeng L, Zhang M, Duan W, Ji Y, Cao J, Geng M, Shen A, Hu Y. Design, synthesis, and biological evaluation of the first c-Met/ HDAC inhibitors based on pyridazinone derivatives. ACS Med Chem Lett. 2017;8:830e834.

    Article  Google Scholar 

  101. Liu J, Qian C, Zhu Y, Cai J, He Y, Li J, Wang T, Zhu H, Li Z, Li W, Hu L. Design, synthesis and evaluate of novel dual FGFR1 and HDAC inhibitors bearing an indazole scaffold. Bioorg Med Chem. 2018;26:747e757.

    Article  Google Scholar 

  102. Mahboobi S, Dove S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T. Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rbeta, and histone deacetylases. J Med Chem. 2009;52:2265e2279.

    Article  Google Scholar 

  103. Cheng C, Yun F, Ullah S, Yuan Q. Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity. Eur J Med Chem. 2020;189:112073.

    Article  CAS  PubMed  Google Scholar 

  104. Chen D, Soh CK, Goh WH, Wang H. Design, synthesis, and preclinical evaluation of fused pyrimidine-based hydroxamates for the treatment of hepatocellular carcinoma. J Med Chem. 2018;61:1552–75.

    Article  CAS  PubMed  Google Scholar 

  105. Dong G, Chen W, Wang X, Yang X, Xu T, Wang P, Zhang W, Rao Y, Miao C, Sheng C. Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylase (HDAC) dual inhibitors. J Med Chem. 2017;60:7965e7983.

    Article  Google Scholar 

  106. Yuan Z, Chen S, Sun Q, Wang N, Li D, Miao S, Gao C, Chen Y, Tan C, Jiang Y. Olaparib hydroxamic acid derivatives as dual PARP and HDAC inhibitors for cancer therapy. Bioorg Med Chem. 2017;25:4100e4109.

    Article  Google Scholar 

  107. Ojha R, Huang HL, HuangFu WC, Wu YW, Nepali K, Lai MJ, Su CJ, Sung TY, Chen YL, Pan SL, Liou JP. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur J Med Chem. 2018;150:667e677.

    Article  Google Scholar 

  108. Lai MJ, Ojha R, Lin MH, Liu YM, Lee HY, Lin TE, Hsu KC, Chang CY, Chen MC, Nepali K, Chang JY, Liou JP. 1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur J Med Chem. 2019;162:612e630.

    Article  Google Scholar 

  109. Wang T, Sepulved M, Gonzales P, Gately S. Identification of novel HDAC inhibitors through cell based screening and their evaluation as potential anticancer agents. Bioorg Med Chem Lett. 2013;23:4790–3.

    Article  CAS  PubMed  Google Scholar 

  110. Nam NH, Huong TL, Dung DTM, Dung PTP, Oanh DTK, Quyen D, Thao LT, Park SH, Kim KR, Han BW, Yun J, Kang JS, Kim Y, Han SB. Novel isatin-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Eur J Med Chem. 2013;70:477–86.

    Article  CAS  PubMed  Google Scholar 

  111. Chen PC, Patil V, Guerrant W, Green P, Oyelere AK. Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazolelinked cap group. Bioorg Med Chem. 2008;16:4839–53.

    Article  CAS  PubMed  Google Scholar 

  112. Yao Y, Liao C, Li Z, Wang Z, Sun Q, Liu C, Yang Y, Tu Z, Jiang S. Design, synthesis, and biological evaluation of 1, 3-disubstitutedpyrazole derivatives as new class I and IIb histone deacetylase inhibitors. Eur J Med Chem. 2014;86:639–52.

    Article  CAS  PubMed  Google Scholar 

  113. Bugge S, Buene AF, Jurisch-Yaksi N, Moen IU, Skjønsfjell EM, Sundby E, Hoff BH. Extended structure-activity study of thienopyrimidine-based EGFR inhibitors with evaluation of drug-like properties. Eur J Med Chem. 2016;107:255–74.

    Article  CAS  PubMed  Google Scholar 

  114. Ji X, Peng T, Zhang X, Li J, Yang W, Tong L, Qu R, Jiang H, Ding J, Xie H, Liu H. Design, synthesis and biological evaluation of novel 6-alkenylamides substituted of 4-anilinothieno[2,3-d]pyrimidines as irreversible epidermal growth factor receptor inhibitors. Bioorg Med Chem. 2014;22:2366–78.

    Article  CAS  PubMed  Google Scholar 

  115. Wang J, Su M, Li T, Gao A, Yang W, Sheng L, Zang Y, Li J, Liu H. Design, synthesis and biological evaluation of thienopyrimidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors. Eur J Med Chem. 2017;128:293–9.

    Article  CAS  PubMed  Google Scholar 

  116. Yang F, Peng S, Li Y, Su L, Peng Y, Wu J, Chen H, Liu M, Yi Z, Chen Y. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities. Org Biomol Chem. 2016;14:1727–35.

    Article  CAS  PubMed  Google Scholar 

  117. Sarkar R, Banerjee S, Amin Sk A, Adhikari N, Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: a review. Eur J Med Chem. 2020. https://doi.org/10.1016/j.ejmech.2020.112171.

    Article  PubMed  Google Scholar 

  118. Pulya S, Sk A, Amin N, Adhikari S, Biswas TJ, Ghosh B. HDAC6 as privileged target in drug discovery: a perspective. Pharmacological Research. 2020. https://doi.org/10.1016/j.phrs.2020.105274.

    Article  PubMed  Google Scholar 

  119. Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021;277:119504.

    Article  CAS  PubMed  Google Scholar 

  120. Gu G, Dustin D, Fuqua SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol. 2016;31:97–103.

    Article  CAS  PubMed  Google Scholar 

  121. Maccallini C, Ammazzalorso A, Filippis BD, Fantacuzzi M, Giampietro L, Amoroso R. HDAC inhibitors for the therapy of triple negative breast cancer. Pharmaceuticals. 2022;15(6):667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhao C, Zhang Y, Zhang J, Li S, Li M, et al. Discovery of novel fedratinib-based HDAC/JAK/BRD4 triple inhibitors with remarkable antitumor activity against triple negative breast cancer. J Med Chem. 2023;66(20):14150–74.

    Article  CAS  PubMed  Google Scholar 

  123. Rodríguez MDCR, Rodríguez IG, Nattress C, Qureshi A, Halldén G. hdac inhibitors enhance efficacy of the oncolytic adenoviruses Ad∆∆ and Ad-3∆-A20T in pancreatic and triple-negative breast cancer models. Viruses. 2022;14(5):1006.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Jiang XC, Tu FH, Wei LY, Wang BZ, Yuan H, et al. Discovery of a novel g-quadruplex and histone deacetylase (HDAC) dual-targeting agent for the treatment of triple-negative breast cancer. J Med Chem. 2022;65(18):12346–66.

    Article  CAS  PubMed  Google Scholar 

  125. Wu K, Zhang H, Zhou L, Chen L, Mo C, et al. Histone deacetylase inhibitor panobinostat in combination with rapamycin confers enhanced efficacy against triple-negative breast cancer. Exp Cell Res. 2022;421(1):113362.

    Article  CAS  PubMed  Google Scholar 

  126. Barbier C, Mansour A, Ismailova A, Sarmadi F, Scarlata DA, et al. Molecular mechanisms of bifunctional vitamin D receptor agonist-histone deacetylase inhibitor hybrid molecules in triple-negative breast cancer. Sci Rep. 2022;12(1):6745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bhattacharya U, Kamran M, Manai M, Cristofanilli M, Ince TA. Cell-of-origin targeted drug repurposing for triple-negative and inflammatory breast carcinoma with hdac and hsp90 inhibitors combined with niclosamide. Cancers. 2023;15(2):332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mehmood SA, Sahu KK, Sengupta S, Partap S, Karpoormath R, et al. Recent advancement of HDAC inhibitors against breast cancer. Med Oncol. 2023;40(7):201.

    Article  CAS  PubMed  Google Scholar 

  129. Tan C, Lyu H, Ruan S, Liu B. Histone deacetylase (HDAC) inhibitors exhibit antitumor activity in triple negative breast cancer via suppression of HER3 triggered signaling. Can Res. 2022;82(12):2969–2969.

    Article  Google Scholar 

  130. Dai L, Tan C, Wang H, Wang L, Zhang T, Zhi S, et al. Exploring derivatives of quinolizidine alkaloid sophoridine in the design and biological mechanistic evaluation of histone deacetylase inhibitors for triple-negative breast cancer. ChemMedChem. 2023;19(2):e202300467.

    Article  PubMed  Google Scholar 

  131. Garmpis N, Damaskos C, Garmpi N, et al. Histone deacetylases as new therapeutic targets in triple-negative breast cancer: progress and promises. Cancer Genom Proteom. 2017;14:299–313.

    CAS  Google Scholar 

  132. Marks DL, lson RL, Fernandez-zampico ME. Epigenetic control of the tumor microenviroment. Epigenomics. 2016;8:671–87.

    Article  Google Scholar 

  133. Trapani D, Esposito A, Criscitiello C, Mazzarella L, Locatelli M, et al. Entinostat for the treatment of breast cancer. Expert Opin Investig Drugs. 2017;8:965–71.

    Article  Google Scholar 

  134. Sabnis JG, Goloubeva O, Chumsri S, et al. Funcional activation of the estrogen receptor and aromatase by HDAC inhibitor, entinostat sensitizes of ER-negative tumors to letrozole. Cancer Res. 2011;17:1893–903.

    Article  Google Scholar 

  135. Johnstone RW, Licht JD. Histone deactylase inhibitors in cancer therapy: Is transcrition the primary targert? Cancer Cell. 2003;4:13–8.

    Article  CAS  PubMed  Google Scholar 

  136. Wang L, Li H, Ren Y, et al. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel in non-small cell lung cancer via multiple mechanisms. Cell death Dis. 2016;7:e2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zucchetti B, Shimada AK, Katz A, Curigliano G. The role of histone deacetylase inhibitors in metastatic breast cancer. The Breast. 2019;43:130–4.

    Article  PubMed  Google Scholar 

  138. Ganai SA, Shah BA, Yatoo MA, et al. Histone deacetylase inhibitors as sanguine epitherapeutics against the deadliest lung cancer. In: Landry JW, et al., editors. Advances in cancer research, vol. 158. Cambridge: Academic Press; 2023. p. 163–98.

    Google Scholar 

  139. Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, et al. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell selfrenewal and over come drug resistance by suppressing Sox2. Sci Rep. 2020;10:4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim HR, Kim EJ, Yang SH, Jeong ET, Park C, Lee JH, et al. Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway? Exp Mol Med. 2006;38:616–24.

    Article  CAS  PubMed  Google Scholar 

  141. Li CT, Hsiao YM, Wu TC, Lin YW, Yeh YKKT, Ko JL. Vorinostat, SAHA, represses telomerase activity via epigenetic regulation of telomerase reverse transcriptase in non-small cell lung cancer cells. J Cell Biochem. 2011;112:3044–53.

    Article  CAS  PubMed  Google Scholar 

  142. Chun SM, Lee JY, Choi J, Lee JH, Hwang JJ, Kim CS, et al. Epigenetic modulation with HDAC inhibitor CG200745 induces antiproliferation in non-small cell lung cancer cells. PLoS ONE. 2015;10:e0119379.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Deskin B, Yin Q, Zhuang Y, Saito S, Shan B, Lasky JA. Inhibition of HDAC6 attenuates tumor growth of non-small cell lung cancer. Transl Oncol. 2020;13:135–45.

    Article  PubMed  Google Scholar 

  144. Mamdani H, Jalal SI. Histone deacetylase inhibition in non-small cell lung cancer: hype or hope? Front Cell Dev Biol. 2020;8:582370.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Natarajan U, Venkatesan T, Radhakrishnan V, Samuel S, Rasappan P, Rathinavelu A. Cell cycle arrest and cytotoxic effects of SAHA and RG7388 mediated through p21WAF1/CIP1 and p27KIP1 in cancer cells. Medicina. 2019;55(2):30.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Najem SA, Khawaja G, Hodroj MH, Rizk S. Synergistic effect of epigenetic inhibitors decitabine and suberoylanilidehydroxamic acid on colorectal cancer in vitro. Curr Mol Pharmacol. 2019;12(4):281–300.

    Article  CAS  PubMed  Google Scholar 

  147. Garmpis N, Damaskos C, Garmpi A, Nonni A, Georgakopoulou VE, Antoniou E, et al. Histone deacetylases and their inhibitors in colorectal cancer therapy: current evidence and future considerations. Curr Med Chem. 2022;29(17):2979–94.

    Article  CAS  PubMed  Google Scholar 

  148. Shi B, Xu FF, Xiang CP, Jia R, Yan CH, et al. Effect of sodium butyrate on ABC transporters in lung cancer A549 and colorectal cancer HCT116 cells. Oncol Lett. 2020;20(5):1–1.

    Article  CAS  Google Scholar 

  149. Lea MA, Patel N, desBorde C. Response of bladder and colon cancer cells to combined treatment with bromodomain and histone deacetylase inhibitors. Cancer Res. 2019;79(13):4734–4734.

    Article  Google Scholar 

  150. Deka D, Scarpa M, Das A, Pathak S, Banerjee A. Current understanding of epigenetics driven therapeutic strategies in colorectal cancer management. Endocr Metab Immune Disord Drug Targets. 2021;21(10):1882–94.

    Article  CAS  PubMed  Google Scholar 

  151. He S, Dong G, Li Y, Wu S, Wang W, Sheng C. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew Chem Int Ed. 2020;59(8):3028–32.

    Article  CAS  Google Scholar 

  152. Krauß L, Urban BC, Hastreiter S, Schneider C, Wenzel P, Hassan Z, Wirth M, et al. HDAC2 facilitates pancreatic cancer metastasis. Can Res. 2022;82(4):695–707.

    Article  Google Scholar 

  153. Roca MS, Moccia T, Iannelli F, Testa C, Vitagliano C, et al. HDAC class I inhibitor domatinostat sensitizes pancreatic cancer to chemotherapy by targeting cancer stem cell compartment via FOXM1 modulation. J Exp Clin Cancer Res. 2022;41(1):1–19.

    Google Scholar 

  154. Zeng Y, Yin L, Zhou J, Zeng R, Xiao Y, Black AR, et al. MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene. 2022;41(31):3859–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Blaauboer A, van Koetsveld PM, Mustafa DA, Dumas J, Dogan F, et al. The Class I HDAC inhibitor valproic acid strongly potentiates gemcitabine efficacy in pancreatic cancer by immune system activation. Biomedicines. 2022;10(3):517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chao MW, Chang LH, Tu HJ, Chang CD, Lai MJ, et al. Combination treatment strategy for pancreatic cancer involving the novel HDAC inhibitor MPT0E028 with a MEK inhibitor beyond K-Ras status. Clin Epigenetics. 2019;11(1):1–14.

    Article  CAS  Google Scholar 

  157. Ali AI, Wang M, von Scheidt B, Dominguez PM, Harrison AJ, Tantalo DGM, Kang J, et al. A histone deacetylase inhibitor, panobinostat, enhances chimeric antigen receptor T-cell antitumor effect against pancreatic cancer. Clin Cancer Res. 2021;27(22):6222–34.

    Article  CAS  PubMed  Google Scholar 

  158. Kauh J, Fan S, Xia M, Yue P, Yang L, Khuri FR, et al. c-FLIP degradation mediates sensitization of pancreatic cancer cells to TRAIL-induced apoptosis by the histone deacetylase inhibitor LBH589. PLoS ONE. 2010;5(4):e10376.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Stockhammer P, Okumus Ö, Hegedus L, Rittler D, Ploenes T, Herold T, et al. Hdac inhibition induces cell cycle arrest and mesenchymal-epithelial transition in a novel pleural-effusion derived uterine carcinosarcoma cell line. Pathol Oncol Res. 2021;27:636088.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yang Q, Falahati A, Khosh A, Mohammed H, Kang W, Corachán A, et al. Targeting class I histone deacetylases in human uterine leiomyosarcoma. Cells. 2022;11(23):3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Carbajo-García MC, García-Alcázar Z, Corachán A, Monleón J, Trelis A, Faus A, et al. Histone deacetylase inhibition by suberoylanilide hydroxamic acid: a therapeutic approach to treat human uterine leiomyoma. Fertil Steril. 2022;117(2):433–43.

    Article  PubMed  Google Scholar 

  162. Yang Q, Corachan A, Victoria Victoria Bariani M, Al-Hendy A. The Regulatory mechanism of histone deacetylases in epigenetic regulation: emerging paradigms from Hdac inhibition studies in uterine leiomyosarcoma. Fertil Steril. 2022;118(4):e338.

    Article  Google Scholar 

  163. Baek MH, Park JY, Park Y, Kim KR, Kim DY, Suh DS, et al. The combination of histone deacetylase and p53 expressions and histological subtype has prognostic implication in uterine leiomyosarcoma. Jpn J Clin Oncol. 2019;49(8):719–26.

    Article  PubMed  Google Scholar 

  164. Frohlich LF, Mrakovcic M, Smole C, Zatloukal K. Molecular mechanism leading to SAHA-induced autophagy in tumor cells: evidence for a p53-dependent pathway. Cancer Cell Int. 2016;16(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Maleszewska M, Kaminska B. Deregulation of histone-modifying enzymes and chromatin structure modifiers contributes to glioma development. Future Oncol. 2015;11(18):2587–601.

    Article  CAS  PubMed  Google Scholar 

  166. Freese K, Seitz T, Dietrich P, Lee SM, Thasler WE, Bosserhoff A, Hellerbrand C. Histone deacetylase expressions in hepatocellular carcinoma and functional effects of histone deacetylase inhibitors on liver cancer cells in vitro. Cancers. 2019;11(10):1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Garmpis N, Damaskos C, Garmpi A, Georgakopoulou VE, Sarantis P, Antoniou EA, Karamouzis MV, et al. Histone deacetylase inhibitors in the treatment of hepatocellular carcinoma: current evidence and future opportunities. J Pers Med. 2021;11(3):223.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yang W, Feng Y, Zhou J, Ka-Wing Cheung O, Cao J, Wang J, Tang W, et al. A selective HDAC8 inhibitor potentiates antitumor immunity and efficacy of immune checkpoint blockade in hepatocellular carcinoma. Sci Transl Med. 2021;13(588):eaaz6804.

    Article  CAS  PubMed  Google Scholar 

  169. Tapadar S, Fathi S, Wu B, Sun CQ, Raji I, Moore SG, et al. Liver-targeting class I selective histone deacetylase inhibitors potently suppress hepatocellular tumor growth as standalone agents. Cancers. 2020;12(11):3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee HA, Chu KB, Moon EK, Kim SS, Quan FS. Sensitization to oxidative stress and G2/M cell cycle arrest by histone deacetylase inhibition in hepatocellular carcinoma cells. Free Radical Biol Med. 2020;147:129–38.

    Article  CAS  Google Scholar 

  171. Llopiz D, Ruiz M, Villanueva L, Iglesias T, Silva L, Egea J, Lasarte JJ, et al. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor belinostat in a murine hepatocellular carcinoma model. Cancer Immunol Immunother. 2019;68:379–93.

    Article  CAS  PubMed  Google Scholar 

  172. Xiao Q, Liu H, Wang HS, Cao MT, Meng XJ, Xiang YL, et al. Histone deacetylase inhibitors promote epithelial-mesenchymal transition in hepatocellular carcinoma via AMPK-FOXO1-ULK1 signaling axis-mediated autophagy. Theranostics. 2020;10(22):10245.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Liu Q, Zhang B, Wang Y, Wang X, Gou S. Discovery of phthalazino [1, 2-b]-quinazolinone derivatives as multi-target HDAC inhibitors for the treatment of hepatocellular carcinoma via activating the p53 signal pathway. Eur J Med Chem. 2022;229:114058.

    Article  CAS  PubMed  Google Scholar 

  174. Streubel G, Schrepfer S, Kallus H, Parnitzke U, Wulff T, Hermann F, Borgmann M, Hamm S. Histone deacetylase inhibitor resminostat in combination with sorafenib counteracts platelet-mediated pro-tumoral effects in hepatocellular carcinoma. Sci Rep. 2021;11(1):9587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mikami D, Kobayashi M, Uwada J, Yazawa T, Kamiyama K, Nishimori K, Nishikawa Y, et al. AR420626, a selective agonist of GPR41/FFA3, suppresses growth of hepatocellular carcinoma cells by inducing apoptosis via HDAC inhibition. Ther Adv Med Oncol. 2020;12:1758835920913432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rithanya P, Ezhilarasan D. Sodium valproate, a histone deacetylase inhibitor, provokes reactive oxygen species–mediated cytotoxicity in human hepatocellular carcinoma cells. J Gastrointest Cancer. 2021;52:138–44.

    Article  CAS  PubMed  Google Scholar 

  177. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Esquela-Kerscher A, Slack FJ. Oncomirs—micrornas with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  179. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–81.

    Article  CAS  PubMed  Google Scholar 

  180. Shin S, Lee EM, Cha HJ, Bae S, Jung JH, et al. MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells. Int J Oncol. 2009;35:1343–52.

    CAS  PubMed  Google Scholar 

  181. Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:2092–9.

    Article  CAS  Google Scholar 

  182. Varricchi G, Marone G, Mercurio V, Galdiero MR, Bonaduce D, Tocchetti CG. Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr Med Chem. 2018;25:1327–39.

    Article  CAS  PubMed  Google Scholar 

  183. Terranova-Barberio M, Thomas S, Ali N, Pawlowska N, Park J, Krings G, et al. Hdac inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget. 2017;8:114156–72.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J. Hdac inhibition upregulates pd-1 ligands in melanoma and augments immunotherapy with pd-1 blockade. Cancer Immunol Res. 2015;3:1375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, et al. The class i/iv hdac inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother. 2018;67:381–92.

    Article  CAS  PubMed  Google Scholar 

  186. Stone ML, Chiappinelli KB, Li H, Murphy LM, Travers ME, et al. Epigenetic therapy activates type i interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci USA. 2017;114:E10981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cycon KA, Mulvaney K, Rimsza LM, Persky D, Murphy SP. Histone deacetylase inhibitors activate ciita and mhc class ii antigen expression in diffuse large b-cell lymphoma. Immunology. 2013;140:259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, J, et al. Selective hdac6 inhibitors improve anti-pd-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 2019;20:2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yan Y, Huang C, Shu Y, Wen H, Shan C, Wang X, et al. An HDAC8-selective fluorescent probe for imaging in living tumor cell lines and tissue slices. Org Bioorganic Chem. 2021;19:8352–66.

    Article  CAS  Google Scholar 

  191. Huang Y, Ru HB, Bao B, Yu JH, Li J, Zang Y, Lu W. The design of a novel near-infrared fluorescent HDAC inhibitor and image of tumor cells. Bioorganic Med Chem. 2020;28:115639.

    Article  CAS  Google Scholar 

  192. Zhang SW, Gong CJ, Su MB, Chen F, et al. Synthesis and in vitro and in vivo biological evaluation of tissue-specific bisthiazole histone deacetylase (HDAC) inhibitors. J Med Chem. 2020;63(2):804–15.

    Article  CAS  PubMed  Google Scholar 

  193. Liu J, Zhou J, He F, Gao L, Wen Y, Gao L, et al. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. EJMECH. 2020. https://doi.org/10.1016/j.ejmech.2020.112189.

    Article  Google Scholar 

  194. Yang Y, Liu Q, Wang X, Gou S. Design, synthesis, and biological evaluation of novel HDAC inhibitors with a 3-(benzazol-2-yl)quinoxaline framework. Bioorg Med Chem Lett. 2023;88:129305.

    Article  CAS  PubMed  Google Scholar 

  195. Kandasamy S, Subramani P, Srinivasan K, Jayaraj JM, Prasanth G, et al. Design and synthesis of imidazole-based zinc binding groups as novel small molecule inhibitors targeting Histone deacetylase enzymes in lung cancer. J Mol Struct. 2020;1214:128177.

    Article  CAS  Google Scholar 

  196. Mo H, Zhang R, Chen Y, Li ST, Wang Y, et al. Synthesis and anticancer activity of novel histone deacetylase inhibitors that inhibit autophagy and induce apoptosis. Eur J Med Chem. 2022;243:114705.

    Article  CAS  PubMed  Google Scholar 

  197. Sun N, Yang K, Yan W, Yao M, Yu C, et al. Design and synthesis of triazole-containing HDAC inhibitors that induce antitumor effects and immune response. J Med Chem. 2023;66(7):4802–26.

    Article  CAS  PubMed  Google Scholar 

  198. Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008;18:291–7.

    Article  PubMed  Google Scholar 

  199. Aldana-Masangkay GI, Sakamoto KM. The role of HDAC6 in cancer. J Biomed Biotechnol. 2011. https://doi.org/10.1155/2011/875824.

    Article  PubMed  Google Scholar 

  200. Deakin NO, Turner CE. Paxillin inhibits HDAC6 to regulate microtubule acetylation, golgi structure, and polarized migration. J Cell Biol. 2014;206:395–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Arsenault D, Brochu-Gaudreau K, Charbonneau M, Dubois CM. HDAC6 deacetylase activity is required for hypoxiainduced invadopodia formation and cell invasion. PLoS ONE. 2013;8:e55529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–8.

    Article  CAS  PubMed  Google Scholar 

  203. Kaluza D, Kroll J, Gesierich S, Yao TP, Boon RA, et al. Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J. 2011;30:4142–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hai Y, Christianson DW. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol. 2016;12:741–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miyake Y, Keusch JJ, Wang L, Saito M, Hess D, Wang X, Melancon BJ, et al. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat Chem Biol. 2016;12:748–54.

    Article  CAS  PubMed  Google Scholar 

  206. Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci Rep. 2020;10:10462.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Hsieh YL, Tu HJ, Pan SL, Liou JP, Yang CR. Anti-metastatic activity of MPT0G211, a novel hdac6 inhibitor, in human breast cancer cells in vitro and in vivo. Biochim Et Biophys Acta (BBA)-Mol Cell Res. 2019;1866:992–1003.

    Article  CAS  Google Scholar 

  208. Song H, Niu X, Quan J, Li Y, Yuan L, Wang J, Ma C, Ma E. Discovery of specific HDAC6 inhibitor with anti-metastatic effects in pancreatic cancer cells through virtual screening and biological evaluation. Bioorg Chem. 2020;97:103679.

    Article  CAS  PubMed  Google Scholar 

  209. Li Y, Quan J, Song H, Li D, Ma E, Wang Y, Ma C. Novel Pyrrolo[2,1-c][1,4]Benzodiazepine-3,11-Dione (PBD) derivatives as selective HDAC6 inhibitors to suppress tumor metastasis and invasion in vitro and in vivo. Bioorg Chem. 2021;114:105081.

    Article  CAS  PubMed  Google Scholar 

  210. Ruzic D, Ellinger B, Djokovic N, Santibanez JF, Gul S, Beljkas M, Djuric A, et al. Discovery of 1-benzhydrylpiperazine-based HDAC inhibitors with anti-breast cancer activity: synthesis, molecular modeling, in vitro and in vivo biological evaluation. Pharmaceutics. 2022;14:2600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Elbatrawy OR, Hagras M, El Deeb MA, Agili F, Hegazy M, et al. Discovery of new uracil and thiouracil derivatives as potential HDAC inhibitors. Pharmaceuticals. 2023;16(7):966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhang L, Chen Y, Li F, Zhang L, Feng J, Zhang L. Discovery and SAR analysis of 5-chloro-4- ((substituted phenyl)amino)pyrimidine bearing histone deacetylase inhibitors. J Enzyme Inhib Med Chem. 2022;37(1):1918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tian C, Huang S, Xu Z, Liu W, Li D, et al. Design, synthesis, and biological evaluation of β-carboline 1,3,4-oxadiazole based hybrids as HDAC inhibitors with potential antitumor effects. Bioorg Med Chem Lett. 2022;64:128663.

    Article  CAS  PubMed  Google Scholar 

  214. Monneret C. Histone deacetylase inhibitors. Eur J Med Chem. 2005;40:1–13.

    Article  CAS  PubMed  Google Scholar 

  215. Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem. 2016;121:451–83.

    Article  CAS  PubMed  Google Scholar 

  216. Sangwan R, Rajan R, Mandal PK. HDAC as onco target: reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem. 2018;158:620–706.

    Article  CAS  PubMed  Google Scholar 

  217. Pidugu VR, Yarla NS, Pedada SR, Kalle AM, KrishnaSatyab A. Design and synthesis of novel HDAC8 inhibitory 2, 5-disubstituted-1, 3, 4-oxadiazoles containing glycine and alanine hybrids with anticancer activity. Bioorg Med Chem. 2016;24:5611–7.

    Article  CAS  PubMed  Google Scholar 

  218. Wang X, Li X, Li J, Hou J, Qu Y, Yu C, He F, Xu W, Wu J. Design, synthesis, and preliminary bioactivity evaluation of N1 -hydroxyterephthalamide derivatives with indole cap as novel histone deacetylase inhibitors. Chem Biol Drug Des. 2017;89:38–46.

    Article  CAS  PubMed  Google Scholar 

  219. Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: emerging indications and novel molecules. Br J Clin Pharmacol. 2021;87(12):4577–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dipanjan Karati is thankful to School of Pharmacy, Techno India University for their continuous support.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

We declare that this work was done by the authors named in this article: SR and SWM conceived and designed the study. DK wrote the paper and prepared the figures. SR, and SWM drafted the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Souvik Roy.

Ethics declarations

Competing interests

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karati, D., Mukherjee, S. & Roy, S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 41, 84 (2024). https://doi.org/10.1007/s12032-024-02303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02303-x

Keywords

Navigation