Skip to main content

Advertisement

Log in

Deep Brain Stimulation Emergencies: How the New Technologies Could Modify the Current Scenario

  • Movement Disorders (S Fox, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

After 25 years of deep brain stimulation (DBS) for the treatment of Parkinson’s disease, it has become increasingly recognized that a range of postoperative urgent situations and emergencies may occur. In this review we describe the possible scenarios of DBS-related emergencies: perioperative (intraoperative and early postoperative) and postoperative settings and issues from suboptimal control of motor and nonmotor symptoms in the early programming phase and during long-term follow-up. We also outline potential advantages in the management of these emergencies offered by the newest devices, emerging technologies, and new possibilities in programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349:1925–34.

    Article  CAS  PubMed  Google Scholar 

  2. Kupsch A, Benecke R, Müller J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–90.

    Article  CAS  PubMed  Google Scholar 

  3. Nuttin B, Cosyns P, Demeulemeester H, et al. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive–compulsive disorder. Lancet. 1999;354:1526.

    Article  CAS  PubMed  Google Scholar 

  4. Kiss ZH, Doig-Beyaert K, Eliasziw M, et al. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain. 2007;130:2879–86.

    Article  PubMed  Google Scholar 

  5. Boviatsis EJ, Stavrinou LC, Themistocleous M, et al. Surgical and hardware complications of deep brain stimulation: a seven-year experience and review of the literature. Acta Neurochir (Wien). 2010;152:2053–62.

    Article  Google Scholar 

  6. Burdick AP, Fernandez HH, Okun MS, et al. Relationship between higher rates of adverse events in deep brain stimulation using standardized prospective recording and patient outcomes. Neurosurg Focus. 2010;29(2):E4.

    Article  PubMed  Google Scholar 

  7. Kenney C, Simpson R, Hunter C, et al. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. J Neurosurg. 2007;106:621–5.

    Article  PubMed  Google Scholar 

  8. Hariz MI. Complications of deep brain stimulation surgery. Mov Disord. 2002;17 Suppl 3:S162–6.

    Article  PubMed  Google Scholar 

  9. Chang WS, Kim HY, Kim P, Park YS, Chung SS, Chang JW. Bilateral subthalamic deep brain stimulation using single track microelectrode recording. Acta Neurochir (Wien). 2011;153:1087–95.

    Article  Google Scholar 

  10. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56:722–32.

    Article  PubMed  Google Scholar 

  11. Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2012;116:84–94.

    Article  PubMed  Google Scholar 

  12. Montgomery EB. Reply: Image-verified deep brain stimulation reduces risk and cost with no apparent impact on efficacy. Mov Disord. 2012;27:1586–7.

    Article  Google Scholar 

  13. Alterman RL, Weisz D. Microelectrode recording during deep brain stimulation and ablative procedures. Mov Disord. 2012;27:1347–139.

    Article  PubMed  Google Scholar 

  14. Bour LJ, Contarino MF, Foncke EMJ, et al. Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir. 2010;152:206984–2077.

    Article  Google Scholar 

  15. Morishita T, Burdick A, Okun MS, et al. Cerebral venous infarction: an avoidable complication of deep brain stimulation surgery. In: The Movement Disorder Society’s 13th International Congress of Parkinson’s Disease and Movement Disorders. Paris; 2009.

  16. Oyama G, Okun MS, Zeisevicz TA, et al. Delayed clinical improvement after deep brain stimulation-related subdural hematoma. J Neurosurg. 2011;115(2):289–94.

    Article  PubMed  Google Scholar 

  17. Simuni T, Jaggi JL, Mulholland H, et al. Bilateral stimulation of the subthalamic nucleus in patients with Parkinson disease: a study of efficacy and safety. J Neurosurg. 2002;96:666–72.

    Article  PubMed  Google Scholar 

  18. Nguyen HS, Pahapill PA. Subacute subdural hematoma in a patient with bilateral DBS ELECTRODES. Case Rep Neurol Med. 2015;2015:390727. doi:10.1155/2015/390727.

    PubMed  PubMed Central  Google Scholar 

  19. Hooper AK, Okun MS, Foote KD, et al. Venous air embolism in deep brain stimulation. Stereotact Funct Neurosurg. 2009;87:25–30.

    Article  PubMed  Google Scholar 

  20. Chang EF, Cheng JS, Richardson RM, et al. Incidence and management of venous air embolisms during awake deep brain stimulation surgery in a large clinical series. Stereotact Funct Neurosurg. 2011;89:76–82.

    Article  PubMed  Google Scholar 

  21. Deogaonkar A, Avitsian R, Henderson JM, Schubert A. Venous air embolism during deep brain stimulation surgery in an awake supine patient. Stereotact Funct Neurosurg. 2005;83:32–5.

    Article  PubMed  Google Scholar 

  22. Deuschl G, Herzog J, Kleiner-Fisman G, et al. Deep brain stimulation: postoperative issues. Mov Disord. 2006;21 Suppl 14:S219–37.

    Article  PubMed  Google Scholar 

  23. Hooper AK, Ellis TM, Foote KD, Zeilman P, Okun MS. Dyskinetic storm induced by intra-operative deep brain stimulator placement. Open Neurosurg J. 2009;2:1–3.

    Article  Google Scholar 

  24. Morishita T, Foote KD, Wu SS, et al. Brain penetration effects of microelectrodes and deep brain stimulation leads in ventral intermediate nucleus stimulation for essential tremor. J Neurosurg. 2010;112:491–6.

    Article  PubMed  Google Scholar 

  25. Frucht SJ. Movement disorder emergencies in the perioperative period. Neurol Clin. 2004;22:379–87.

    Article  PubMed  Google Scholar 

  26. Poston KL, Frucht SJ. Movement disorder emergencies. J Neurol. 2008;255 Suppl 4:2–13.

    Article  PubMed  Google Scholar 

  27. Okun MS, Green J, Saben R, et al. Mood changes with deep brain stimulation of STN and GPi: results of a pilot study. J Neurol Neurosurg Psychiatry. 2003;74:1584–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hariz MI, Rehncrona S, Quinn NP, et al. Multicenter study on deep brain stimulation in Parkinson’s disease: an independent assessment of reported adverse events at 4 years. Mov Disord. 2008;23:416–21.

    Article  PubMed  Google Scholar 

  29. Okun MS, Fernandez HH, Wu SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009;65:586–95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gross RE, McDougal ME. Technological advances in the surgical treatment of movement disorders. Curr Neurol Neurosci Rep. 2013;13:1–12.

    Article  Google Scholar 

  31. Bot M, van den Munckhof P, Bakay RA, et al. Analysis of stereotactic accuracy in patients undergoing deep brain stimulation using Nexframe and Leksell frame. Stereotact Funct Neurosurg. 2015;93:316–25.

    Article  PubMed  Google Scholar 

  32. Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS. Subthalamic nucleus deep brain stimulator placement using high field interventional magnetic resonance imaging and a skull mounted aiming device: technique and application accuracy. J Neurosurg. 2010;112:479–90.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ostrem JL, Galifianakis NB, Markun LC, et al. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clin Neurol Neurosurg. 2013;115:708–12.

    Article  PubMed  Google Scholar 

  34. Ostrem JL, Ziman N, Galifianakis NB, Starr PA. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg. 2016;124:908–16.

    Article  PubMed  Google Scholar 

  35. Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA. Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov Disord. 2014;29:1788–95.

    Article  PubMed  Google Scholar 

  36. Burchiel KJ, McCartney S, Lee A, et al. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119:301–6.

    Article  PubMed  Google Scholar 

  37. Molnar G, Lyons K, Gould S, et al. Initial assessment of Optivise TM DBS care management software to assist deep brain stimulation programming (abstract). Mov Disord. 2014; 29:67

  38. Pourfar M, Mogilner AY, Farris S, et al. Model-based deep brain stimulation programming for Parkinson’s Disease: the GUIDE pilot study. Srereotact Funct Neurosurg. 2015;93:231–9.

    Article  Google Scholar 

  39. Frankemolle AMM, Wu J, Noecker AM, et al. Reversing cognitive–motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain. 2010;133:746–61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beric A, Kelly PJ, Rezai A, et al. Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg. 2001;77:73–8.

    Article  CAS  PubMed  Google Scholar 

  41. Sillay KA, Larson PS, Starr PA. Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery. 2008;62:360–6. discussion 366–7.

    Article  PubMed  Google Scholar 

  42. Joint C, Nandi D, Parkin S, Gregory R, Aziz T. Hardware-related problems of deep brain stimulation. Mov Disord. 2002;17 Suppl 3:S175–80.

    Article  PubMed  Google Scholar 

  43. Kondziolka D, Whiting D, Germanwala A, Oh M. Hardware-related complications after placement of thalamic deep brain stimulator systems. Stereotact Funct Neurosurg. 2002;79:228–33.

    Article  PubMed  Google Scholar 

  44. Oh MY, Abosch A, Kim SH, Lang AE, Lozano AM. Long-term hardware-related complications of deep brain stimulation. Neurosurgery. 2002;50:1268–74. discussion 1274–76.

    PubMed  Google Scholar 

  45. Blomstedt P, Hariz MI. Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir (Wien). 2005;147:1061–4.

    Article  CAS  Google Scholar 

  46. Koller W, Pahwa R, Busenbark K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol. 1997;42:292–9.

    Article  CAS  PubMed  Google Scholar 

  47. Miller JP, Acar F, Burchiel KJ. Significant reduction in stereotactic and functional neurosurgical hardware infection after local neomycin/polymyxin application. J Neurosurg. 2009;110:247–50.

    Article  PubMed  Google Scholar 

  48. Morishita T, Foote KD, Burdick AP, Katayama Y, Yamamoto T, Frucht SJ, et al. Identification and management of deep brain stimulation intra- and postoperative urgencies and emergencies. Parkinsonism Relat Disord. 2010;16(3):153–62.

    Article  PubMed  Google Scholar 

  49. Ryu I, Romanelli P, Heit G. Asymptomatic transient MRI signal changes after unilateral deep brain stimulation electrode implantation for movement disorder. Stereotact Funct Neurosurg. 2004;82(2–3):65–9.

    Article  PubMed  Google Scholar 

  50. Englot DJ, Glastonbury CM, Larson PS. Abnormal T2-weighted MRI signal surrounding leads in a subset of deep brain stimulation patients. Stereotact Funct Neurosurg. 2011;89(5):311–7.

    Article  PubMed  Google Scholar 

  51. Deogaonkar M, Nazzaro JM, Machado A, et al. Transient, symptomatic, post-operative, non-infectious hypodensity around the deep brain stimulation (DBS) electrode. J Clin Neurosci. 2011;18(7):910–5.

    Article  PubMed  Google Scholar 

  52. Skogseid IM, Ramm-Pettersen J, Volkmann J, et al. Good long-term efficacy of pallidal stimulation in cervical dystonia: a prospective, observer-blinded study. Eur J Neurol. 2012;19(4):610–5.

    Article  CAS  PubMed  Google Scholar 

  53. Charles PD, Dolhun RM, Gill CE, et al. Deep brain stimulation in early Parkinson's disease: enrollment experience from a pilot trial. Parkinsonism Relat Disord. 2012;18(3):268–73.

    Article  CAS  PubMed  Google Scholar 

  54. Lefaucheur R, Derrey S, Borden A, et al. Post-operative edema surrounding the electrode: an unusual complication of deep brain stimulation. Brain Stimul. 2013;6(3):459–60.

    Article  PubMed  Google Scholar 

  55. de Cuba CM, Albanese A, Antonini A, Cossu G, et al. Idiopathic delayed-onset edema surrounding deep brain stimulation leads: Insights from a case series and systematic literature review. Parkinsonism Relat Disord. 2016;32:108–15. The description of a new clinical entity in the context of post-DBS late complications.

    Article  PubMed  Google Scholar 

  56. Okun MS, Rodriguez RL, Foote KD, et al. A case-based review of troubleshooting deep brain stimulator issues in movement and neuropsychiatric disorders. Parkinsonism Relat Disord. 2008;14:532–8.

    Article  PubMed  Google Scholar 

  57. Hariz MI, Johansson F. Hardware failure in parkinsonian patients with chronic subthalamic nucleus stimulation is a medical emergency. Mov Disord. 2001;16:166–8.

    Article  CAS  PubMed  Google Scholar 

  58. Hariz MI, Shamsgovara P, Johansson F, et al. Tolerance and tremor rebound following long-term chronic thalamic stimulation for Parkinsonian and essential tremor. Stereotact Funct Neurosurg. 1999;72:208–18.

    Article  CAS  PubMed  Google Scholar 

  59. Factor SA. Fatal Parkinsonism-hyperpyrexia syndrome in a Parkinson’s disease patient while actively treated with deep brain stimulation. Mov Disord. 2007;22(1):148–9.

    Article  PubMed  Google Scholar 

  60. Granziera C, Pollo C, Russmann H, et al. Sub-acute delayed failure of subthalamic DBS in Parkinson’s disease: the role of micro-lesion effect. Parkinsonism Relat Disord. 2008;14:109–13.

    Article  CAS  PubMed  Google Scholar 

  61. Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord. 2006;21 Suppl 14:S284–9.

    Article  PubMed  Google Scholar 

  62. Lempka SF, Johnson MD, Miocinovic S, et al. Current controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin Neurophysiol. 2012;121:2128–33.

    Article  Google Scholar 

  63. Moro E, Poon YY, Lozano AM, et al. Subthalamic nucleus stimulation improvements in outcome with reprogramming. Arch Neurol. 2006;63:1266–72.

    PubMed  Google Scholar 

  64. Picillo M, Lozano AM, Kou N, et al. Programming deep brain stimulation for Parkinson’s disease: the Toronto Western Hospital algorithms. Brain Stimul. 2016;9:425–37. A useful practical clinical algorithm for DBS programming.

    Article  PubMed  Google Scholar 

  65. Sriram A, Foote KD, Oyama G. Brittle dyskinesia following STN but not GPi deep brain stimulation. Tremor Other Hyperkine Mov. 2014;4:242. doi:10.7916/D8KS6PPR.

    Google Scholar 

  66. Romito MLM, Messina G, Franzini A. Severe brittle dyskinesias following DBS battery replacement. Acta Neurochir. 2015;157:1441–2.

    Article  PubMed  Google Scholar 

  67. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. 2006;129:1732–47.

    Article  PubMed  Google Scholar 

  68. Okun MS, Rodriguez RL, Mikos A, et al. Deep brain stimulation and the role of the neuropsychologist. Clin Neuropsychol. 2007;21:162–89.

    Article  PubMed  Google Scholar 

  69. Blomstedt P, Hariz MI, Lees A, et al. Acute severe depression induced by intraoperative stimulation of the substantia nigra: a case report. Parkinsonism Relat Disord. 2008;14:253–6.

    Article  PubMed  Google Scholar 

  70. Bejjani BP, Damier P, Arnulf I, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med. 1999;340:1476–80.

    Article  CAS  PubMed  Google Scholar 

  71. Miyawaki E, Perlmutter JS, Troster AI, et al. The behavioral complications of pallidal stimulation: a case report. Brain Cogn. 2000;42:417–34.

    Article  CAS  PubMed  Google Scholar 

  72. Romito LM, Raja M, Daniele A, et al. Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002;17:1371–4.

    Article  PubMed  Google Scholar 

  73. Volkmann J, Allert N, Voges J, et al. Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology. 2001;56:548–51.

    Article  CAS  PubMed  Google Scholar 

  74. Funkiewiez A, Ardouin C, Caputo E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75:834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Czernecki V, Schupbach M, Yaici S, et al. Apathy following subthalamic stimulation in Parkinson disease: a dopamine responsive symptom. Mov Disord. 2008;23:964–9.

    Article  PubMed  Google Scholar 

  76. Drapier D, Drapier S, Sauleau P, et al. Does subthalamic nucleus stimulation induce apathy in Parkinson’s disease? J Neurol. 2006;253:1083–91.

    Article  CAS  PubMed  Google Scholar 

  77. Trepanier LL, Kumar R, Lozano AM, et al. Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson’s disease. Brain Cogn. 2000;42:324–7.

    Article  CAS  PubMed  Google Scholar 

  78. Saint-Cyr JA, Trepanier LL, Kumar R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000;123:2091–108.

    Article  PubMed  Google Scholar 

  79. Porat O, Cohen OS, Schwartz R, Hassin-Baer S. Association of preoperative symptom profile with psychiatric symptoms following subthalamic nucleus stimulation in patients with Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 2009;21:398–405.

    Article  PubMed  Google Scholar 

  80. Denheyer M, Kiss ZH, Haffenden AM. Behavioral effects of subthalamic deep brain stimulation in Parkinson’s disease. Neuropsychologia. 2009;47:3203–39.

    Article  CAS  PubMed  Google Scholar 

  81. Castrioto A, Lhommee E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13:287–305.

    Article  PubMed  Google Scholar 

  82. Krack P. Deep brain stimulation in Parkinson disease. Rev Neurol (Paris). 2008;164 Spec No 2:F89-93.

  83. Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain. 2010;133:1111–27.

    Article  PubMed  Google Scholar 

  84. Eusebio A, Witjas T, Cohen J, et al. Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2013;84:868–74.

    Article  PubMed  Google Scholar 

  85. Kim YE, Kim HJ, Kim HJ, et al. Impulse control and related behaviors after bilateral subthalamic stimulation in patients with Parkinson’s disease. J Clin Neurosci. 2013;20:964–9.

    Article  PubMed  Google Scholar 

  86. Lim SY, O’Sullivan SS, Kotschet K, et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci. 2009;16:1148–52.

    Article  CAS  PubMed  Google Scholar 

  87. Smeding HM, Goudriaan AE, Foncke EMJ, Schuurman PR, Speelman JD. Schmand B Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J Neurol Neurosurg Psychiatr. 2007;78:517–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Halbig TD, Tse W, Frisina PG, Baker BR, Hollander E, Shapiro H, et al. Olanow CW Subthalamic deep brain stimulation and impulse control in Parkinson’s disease. Eur J Neurol. 2009;16:493–7.

    Article  CAS  PubMed  Google Scholar 

  89. Merola A, Romagnolo A, Rizzi L, et al. Impulse control behaviors and subthalamic deep brain stimulation in Parkinson disease. J Neurol. 2017;264(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  90. Foncke EM, Schuurman PR, Speelman JD. Suicide after deep brain stimulation of the internal globus pallidus for dystonia. Neurology. 2006;66:142–3.

    Article  CAS  PubMed  Google Scholar 

  91. Burkhard PR, Vingerhoets FJ, Berney A, et al. Suicide after successful deep brain stimulation for movement disorders. Neurology. 2004;63:2170–2.

    Article  CAS  PubMed  Google Scholar 

  92. Doshi PK, Chhaya N, Bhatt MH. Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17:1084–5.

    Article  PubMed  Google Scholar 

  93. Voon V, Krack P, Lang AE, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain. 2008;131:2720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Appleby BS, Duggan PS, Regenberg A, Rabins PV. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: a meta-analysis of ten years’ experience. Mov Disord. 2007;22:1722–8.

    Article  PubMed  Google Scholar 

  95. Weintraub D, Duda JE, Carlson K, et al. Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson's disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2013;84(10):1113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fakhar K, Hastings E, Butson CR, et al. Management of deep brain battery failure: battery estimators, charge density, and importance of clinical symptoms. PLoS One. 2013;8:58–65.

    Article  CAS  Google Scholar 

  97. Montuno MA, Kohner AB, Foote KD, Okun MS. An algorithm for management of deep brain stimulation IPG replacements: devising a web-based IPG estimator and clinical symptom approach. Neuromodulation. 2013;16:147–53.

    Article  PubMed  Google Scholar 

  98. Ondo WG, Meilak C, Vuong K. Predictors of battery life for the Activa H Soletra 7426 neurostimulator. Parkinsonism Relat Disord. 2007;13(4):240–2.

    Article  PubMed  Google Scholar 

  99. Isaias IU, Alterman RL, Tagliati M. Deep Brain stimulation for primary generalized dystonia: long-term outcomes. Arch Neurol. 2009;66(4):465–70.

    Article  PubMed  Google Scholar 

  100. Alesch F. Sudden failure of dual channel pulse generator. Mov Disord. 2005;20:64–6.

    Article  PubMed  Google Scholar 

  101. Pepper J, Zrinzo L, Mirza B, et al. The risk for hardware infection in deep brain stimulation surgery is greater at impulse generator replacement than at the primary procedure. Stereotact Funct Neurosurg. 2012;91(1):56–65.

    Article  PubMed  Google Scholar 

  102. Timmermann L, Schüpbach M, Hertel F, et al. A new rechargeable device for deep brain stimulation: a prospective patient satisfaction survey. Eur Neurol. 2013;69:193–9.

    Article  PubMed  Google Scholar 

  103. Lettieri C, Rinaldo S, Devigili G, et al. Clinical outcomes of deep brain stimulation for dystonia: constant current or constant-voltage stimulation? A non-randomized study. Eur J Neurol. 2015;22:919–26.

    Article  CAS  PubMed  Google Scholar 

  104. De Noriega FR, Eitan R, Marmor O. Constant current versus constant voltage subthalamic nucleus deep brain stimulation in Parkinson’s disease. Stereotact Funct Neurosurg. 2015;93:114–8.

    Article  Google Scholar 

  105. Okun MS, Gallo BV, Mandybur G, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomized controlled trial. Lancet Neurol. 2012;11:140–9.

    Article  PubMed  Google Scholar 

  106. Timmermann L, Jain R, Chen L, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 2015;14:693–701.

    Article  PubMed  Google Scholar 

  107. Barbe MT. Multiple source current steering. a novel deep brain stimulation concept for customized programming in a Parkinson’s disease patient. Parkinsonism Relat Disord. 2014;20:471–3.

    Article  PubMed  Google Scholar 

  108. Contarino MF, Bour LJ, Verhagen R, et al. Directional steering: a novel approach to deep brain stimulation. Neurology. 2014;83:1163–9. A comprehensive description of directional lead stimulation.

    Article  PubMed  Google Scholar 

  109. Pollo C, Kaelin-Lang A, Oertel MF. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(7):2015–26.

    Article  PubMed  Google Scholar 

  110. Keane M, Deyo S, Abosch A, et al. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor. J Neural Eng. 2012;9(4):046005.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Steigerwald F, Müller L, Johannes S, et al. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord. 2016;31(8):1240–3.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Reker P, Dembek TA, Becker J, et al. Directional deep brain stimulation: a case of avoiding dysarthria with bipolar directional current steering. Parkinsonism Relat Disord. 2016;31:156–8.

    Article  PubMed  Google Scholar 

  113. Contarino MF, Brinke TRT, Mosch A, et al. How many patients would benefit from steering technology for deep brain stimulation?. Brain Stimul. 2016: 144–5.

  114. Reich MM, Steigerwald F, Anna D, et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol. 2015;2(4):427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Reich M, Sawalhe AD, Steigerwald F, et al. The pirouette test to evaluate asymmetry in parkinsonian gait freezing. Mov Disord Clin Pract. 2014;1:136–8.

    Article  Google Scholar 

  116. Preda F, Cavandoli C, Lettieri C, et al. Switching from constant voltage to constant current in deep brain stimulation: a multicenter experience of mixed implants for movement disorders. Eur J Neurol. 2016;23:190–5.

    Article  CAS  PubMed  Google Scholar 

  117. Cheung T, Nuno M, Hoffman M, et al. Longitudinal impedance variability in patients with chronically implanted DBS devices. Brain Stimul. 2013;12:S1935–1861.

    Google Scholar 

  118. Sillay KA, Chen JC, Montigomery EB. Long-term measurement of therapeutic electrode impedance in deep brain stimulation. Neuromodulation. 2010;13:195–200.

    Article  PubMed  Google Scholar 

  119. Satzer D, Lanctin D, Eberly LE, Abosch A. Variation in deep brain stimulation electrode impedance over years following electrode implantation. Stereotact Funt Neurosurg. 2014;92:94–102.

    Article  Google Scholar 

  120. Allert N, Kirsch H, Weirich W, Karbe H. Stability of symptom control after replacement of impulse generators for deep brain stimulation. J Neurosurg. 2009;110:1274–17.

    Article  PubMed  Google Scholar 

  121. Guridi J, Rodriguez-Oroz MC, Alegre M, et al. Hardware complications in deep brain stimulation: electrode impedance and loss of clinical benefit. Parkinsonism Relat Disord. 2012;18:765–9.

    Article  PubMed  Google Scholar 

  122. Chaturvedi A, Foutz TJ, McIntyre CC. Current steering to activate targeted neural pathways during deep brain stimulation of subthalamic region. Brain Stimul. 2012;5:369–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cossu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by either of the authors.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossu, G., Sensi, M. Deep Brain Stimulation Emergencies: How the New Technologies Could Modify the Current Scenario. Curr Neurol Neurosci Rep 17, 51 (2017). https://doi.org/10.1007/s11910-017-0761-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0761-y

Keywords

Navigation