Skip to main content

Advertisement

Log in

Technological Advances in the Surgical Treatment of Movement Disorders

  • Movement Disorders (SA Factor, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in inserting neuromodulation modalities, including DBS, to the target, and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength magnetic resonance imaging and other innovations, such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable computed tomography scanners also are facilitating lead implantation without monitoring, as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue and, in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system, reflected in biomarkers continuously recorded by the devices. Finer-grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via current steering algorithms. Finally, even thermocoagulation—essentially replaced by DBS—is being advanced by new minimally-invasive approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Clarke RH, Horsley V. On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br Med J. 1906;2:1799–800.

    Google Scholar 

  2. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106:349–50.

    Article  CAS  PubMed  Google Scholar 

  3. Kerl HU, Gerigk L, Pechlivanis I, Al-Zghloul M, Groden C, Nolte I. The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol: clinical article. J Neurosurg. 2012;117:1155–65.

    Article  PubMed  Google Scholar 

  4. Nolte IS, Gerigk L, Al-Zghloul M, Groden C, Kerl HU. Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla. Acta Neurochir (Wien). 2012;154:481–94.

    Article  Google Scholar 

  5. • Liu T, Eskreis-Winkler S, Schweitzer A, Chen W, Kaplitt M, Tsiouris A, et al. Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology. 2013. doi:10.1148/radiol.13121991. This report (and others by this group) show remarkable depictions of both STN and GPi targets using quantitative susceptibility mapping, a technique which will gain more widespread availability in the coming year or two.

  6. Traynor CR, Barker GJ, Crum WR, Williams SC, Richardson MP. Segmentation of the thalamus in MRI based on T1 and T2. NeuroImage. 2011;56(3):939–50.

    Article  PubMed  Google Scholar 

  7. • Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67:1745–56. Demonstration of the power of high field strength MRI: remarkable definition of basal ganglia including STN and GPi including internal architecture, and demonstration of individual nuclei (e.g., Vim) within the thalamus in individual human patients.

    Article  PubMed  Google Scholar 

  8. Lenglet C, Abosch A, Yacoub E, De Martino F, Sapiro G, Harel N. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI. PLoS One. 2012;7:e29153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One. 2012;7:e37328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deniau JM, Degos B, Bosch C, Maurice N. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci. 2010;32:1080–91.

    Article  PubMed  Google Scholar 

  11. Henderson JM. “Connectomic surgery”: Diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, et al. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol. 2006;96:1569–80.

    Article  PubMed  Google Scholar 

  13. Butson CR, Cooper SE, Henderson JM, Wolgamuth B, McIntyre CC. Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage. 2011;54:2096–104.

    Article  PubMed  Google Scholar 

  14. Coenen VA, Madler B, Schiffbauer H, Urbach H, Allert N. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery. 2011;68:1069–75.

    Article  PubMed  Google Scholar 

  15. Sandvik U, Koskinen LO, Lundquist A, Blomstedt P. Thalamic and subthalamic deep brain stimulation for essential tremor: where is the optimal target? Neurosurgery. 2012;70:840–5.

    PubMed  Google Scholar 

  16. Coenen V, Allert N, Mädler B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir. 2011;153:1579–85.

    Article  PubMed  Google Scholar 

  17. Sedrak M, Gorgulho A, Bari A, Behnke E, Frew A, Gevorkyan I, et al. Diffusion tensor imaging (DTI) and colored fractional anisotropy (FA) mapping of the subthalamic nucleus (STN) and the globus pallidus interna (GPi). Acta Neurochir (Wien). 2010;152:2079–84.

    Article  Google Scholar 

  18. Pouratian N, Zheng Z, Bari AA, Behnke E, Elias WJ, Desalles AA. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg. 2011;115:995–1004.

    Article  PubMed  Google Scholar 

  19. Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, et al. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage. 2012;60:83–94.

    Article  PubMed  Google Scholar 

  20. Gutman DA, Holtzheimer PE, Behrens TE, Johansen-Berg H, Mayberg HS. A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry. 2009;65(4):276–82.

    Article  PubMed  Google Scholar 

  21. Johansen-Berg H, Gutman DA, Behrens TE, Matthews PM, Rushworth MF, Katz E, et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2008;18:1374–83. doi:10.1093/cercor/bhm167.

    Article  CAS  PubMed  Google Scholar 

  22. Martin AJ, Larson PS, Ostrem JL, Keith Sootsman W, Talke P, Weber OM, et al. Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med. 2005;54:1107–14.

    Article  PubMed  Google Scholar 

  23. •• Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg. 2010;112:479–90. Series of 53 STN DBS implanted in 29 patients using an adaptation for MRI-guidance of a skull mounted miniframe. Eighty-seven percent implanted in single pass with greater accuracy than frame-based procedures, no hematomas, and comparable clinical outcomes. Sets the stage for next reference describing development of a novel system for use in MRI-based DBS implantation [24].

    Article  PubMed  PubMed Central  Google Scholar 

  24. Larson PS, Starr PA, Bates G, Tansey L, Richardson RM, Martin AJ. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery. 2012;70(1 Suppl Operative):95–103.

    PubMed  Google Scholar 

  25. Richardson RM, Varenika V, Forsayeth JR, Bankiewicz KS. Future applications: gene therapy. Neurosurg Clin N Am. 2009;20:205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roskom J, Swistowski A, Zeng X, Lim DA. Future directions: use of interventional MRI for cell-based therapy of Parkinson disease. Neurosurg Clin N Am. 2009;20:211–8.

    Article  PubMed  Google Scholar 

  27. Fiegele T, Feuchtner G, Sohm F, Bauer R, Anton JV, Gotwald T, et al. Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinsonism Relat Disord. 2008;14:595–9.

    Article  PubMed  Google Scholar 

  28. Caire F, Gantois C, Torny F, Ranoux D, Maubon A, Moreau JJ. Intraoperative use of the Medtronic O-arm for deep brain stimulation procedures. Stereotact Funct Neurosurg. 2010;88:109–14.

    Article  CAS  PubMed  Google Scholar 

  29. • Holloway K, Docef A. A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery. 2013;72(1 Suppl Operative):47–57. Quantitative analysis of the accuracy of the O-arm®, a cone-beamed portable CT scanner for intraoperative 3D imaging, in DBS location verification, tracking of serial microelectrode trajectories, and fiducial registration.

    PubMed  Google Scholar 

  30. Shahlaie K, Larson PS, Starr PA. Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment. Neurosurgery. 2011;68(1 Suppl Operative):114–24.

    PubMed  Google Scholar 

  31. Smith AP, Bakay RA. Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article. J Neurosurg. 2011;115:301–9.

    Article  PubMed  Google Scholar 

  32. Patil AA. Intraoperative image fusion to ascertain adequate lead placement. Stereotact Funct Neurosurg. 2011;89:197–200.

    Article  PubMed  Google Scholar 

  33. Raslan AM, Burchiel KJ, Griffith SE, Anderson VC, (eds). Accuracy of DBS electrode placement using NexFrame and the Ceretom intraoperative CT Scanner. CNS 2012 Annual Meeting; 2012; Chicago, IL, USA.

  34. Taghva A. Hidden semi-Markov models in the computerized decoding of microelectrode recording data for deep brain stimulator placement. World Neurosurg. 2011;75:758–63. e4.

    Article  PubMed  Google Scholar 

  35. Taghva A. An automated navigation system for deep brain stimulator placement using hidden Markov models. Neurosurgery. 2010;66(3 Suppl Operative):108–17.

    PubMed  Google Scholar 

  36. Zaidel A, Spivak A, Shpigelman L, Bergman H, Israel Z. Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model. Mov Disord. 2009;24:1785–93.

    Article  PubMed  Google Scholar 

  37. Guillen P, Martinez-de-Pison F, Sanchez R, Argaez M, Velazquez L. Characterization of subcortical structures during deep brain stimulation utilizing support vector machines. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2011;2011:7949–52.

  38. Alegre M, Hallett M, Olanow CW, Obeso JA. Technical advances in deep brain stimulation: how far is enough? Mov Disord. 2012;27:341–2.

    Article  PubMed  Google Scholar 

  39. Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6:046001.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sillay KA, Chen JC, Montgomery EB. Long-term measurement of therapeutic electrode impedance in deep brain stimulation. Neuromodulation. 2010;13:195–200.

    Article  PubMed  Google Scholar 

  41. Lempka SF, Johnson MD, Miocinovic S, Vitek JL, McIntyre CC. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin Neurophysiol. 2010;121:2128–33.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11:140–9.

    Article  PubMed  Google Scholar 

  43. Williams A, Gill S, Varma T, Jenkinson C, Quinn N, Mitchell R, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 2010;9:581–91.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.

    Article  PubMed  Google Scholar 

  45. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med. 2006;355:896–908.

    Article  CAS  PubMed  Google Scholar 

  46. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N Engl J Med. 2010;362:2077–91.

    Article  CAS  PubMed  Google Scholar 

  47. Frankemolle AM, Wu J, Noecker AM, Voelcker-Rehage C, Ho JC, Vitek JL, et al. Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming. Brain. 2010;133:746–61.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wårdell K, Diczfalusy E, Åström M. Patient-specific modeling and simulation of deep brain stimulation. In: Gefen A, editor. Patient-specific modeling in tomorrow's medicine. studies in mechanobiology, tissue engineering and biomaterials. Berlin: Springer; 2012. p. 357–75.

    Google Scholar 

  49. Beriault S, Xiao Y, Bailey L, Collins DL, Sadikot AF, Pike GB. Towards computer-assisted deep brain stimulation targeting with multiple active contacts. Med Image Comput Comput Assist Interv. 2012;15:487–94.

    PubMed  Google Scholar 

  50. Chaturvedi A, Foutz TJ, McIntyre CC. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region. Brain Stimul. 2012;5:369–77.

    Article  PubMed  Google Scholar 

  51. Martens HC, Toader E, Decre MM, Anderson DJ, Vetter R, Kipke DR, et al. Spatial steering of deep brain stimulation volumes using a novel lead design. Clin Neurophysiol. 2011;122:558–66.

    Article  CAS  PubMed  Google Scholar 

  52. Keane M, Deyo S, Abosch A, Bajwa JA, Johnson MD. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor. J Neural Eng. 2012;9:046005.

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Brocker DT, Swan BD, Turner DA, Gross RE, Tatter SB, Miller Koop M, et al. Improved efficacy of temporally non-regular deep brain stimulation in Parkinson's disease. Exp Neurol. 2013;239:60–7. Showed that irregular patterns of stimulation are more efficacious than regular patterns on bradykinesia in Parkinson's disease, and these patterns also more effectively mitigated pathological beta band oscillations in computer models. Perhaps sets the stage for more effective and/or efficient stimulation parameters.

    Article  PubMed  Google Scholar 

  54. Baker KB, Zhang J, Vitek JL. Pallidal stimulation: effect of pattern and rate on bradykinesia in the non-human primate model of Parkinson's disease. Exp Neurol. 2011;231:309–13.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kuncel AM, Cooper SE, Wolgamuth BR, Clyde MA, Snyder SA, Montgomery Jr EB, et al. Clinical response to varying the stimulus parameters in deep brain stimulation for essential tremor. Mov Disord. 2006;21:1920–8.

    Article  PubMed  Google Scholar 

  56. Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Grill WM. Tremor varies as a function of the temporal regularity of deep brain stimulation. Neuroreport. 2008;19:599–602.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol. 2012;107:364–83.

    Article  PubMed  Google Scholar 

  58. Newman JP, Zeller-Townson R, Fong MF, Arcot Desai S, Gross RE, Potter SM. Closed-loop, multichannel experimentation using the open-source neurorighter electrophysiology platform. Front Neural Circuits. 2012;6:98.

    PubMed  Google Scholar 

  59. Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson's disease? Ann N Y Acad Sci. 2012;1265:9–24.

    Article  PubMed  PubMed Central  Google Scholar 

  60. •• Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–84. First evidence that a closed-loop “adaptive” stimulation strategy may be more effective in Parkinson's disease: this study found improved “kinesis” in vervet MPTP model using closed loop paradigm at 30-Hz irregular stimulation, whereas open-loop using similar parameters was ineffective.

    Article  CAS  PubMed  Google Scholar 

  61. Morrell MJ, Group RNSSiES. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–304.

    Article  PubMed  Google Scholar 

  62. •• Okun MS, Foote KD, Wu SS, Ward HE, Bowers D, Rodriguez RL, et al. A Trial of scheduled deep brain stimulation for Tourette syndrome: moving away from continuous deep brain stimulation paradigms. JAMA Neurol. 2013;70:85–94. First use of a closed-loop stimulation system (RNS, Neuropace) in patients with movement disorders, in this case Tourette syndrome. While not used in closed loop mode, “sensing” was, nevertheless, used to collect data on the response of the brain to stimulation [63], showing gamma oscillations in the centromedian thalamus increase with time in proportion to clinical response. May define a “biomarker” that can, in the future, be used to tune stimulation in a true closed-loop adaptive algorithm.

    Article  PubMed  Google Scholar 

  63. Maling N, Hashemiyoon R, Foote KD, Okun MS, Sanchez JC. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome. PLoS One. 2012;7:e44215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rouse AG, Stanslaski SR, Cong P, Jensen RM, Afshar P, Ullestad D, et al. A chronic generalized bi-directional brain-machine interface. J Neural Eng. 2011;8:036018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stanslaski S, Afshar P, Cong P, Giftakis J, Stypulkowski P, Carlson D, et al. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20:410–21.

    Article  PubMed  Google Scholar 

  66. •• Afshar P, Khambhati A, Stanslaski S, Carlson D, Jensen R, Linde D, et al. A translational platform for prototyping closed-loop neuromodulation systems. Front Neural Circuits. 2012;6:117. Details design parameters of a new bi-directional closed-loop neurostimulator available for research applications in human patient, constructed by adding “sensing” from four channels of local field potentials and an integrated accelerometer to a standard approved implantable pulse generator.

    PubMed  Google Scholar 

  67. Van Gompel JJ, Chang SY, Goerss SJ, Kim IY, Kimble C, Bennet KE, et al. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback. Neurosurg Focus. 2010;29:E6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chang SY, Kim I, Marsh MP, Jang DP, Hwang SC, Van Gompel JJ, et al. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin Proc. 2012;87:760–5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Koehne JE, Marsh M, Boakye A, Douglas B, Kim IY, Chang SY, et al. Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry. Analyst. 2011;136:1802–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gross RE. What happened to posteroventral pallidotomy for Parkinson's disease and dystonia? Neurotherapeutics. 2008;5:281–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Elias WJ. Editorial: tremor. J Neurosurg. 2013;118:711–2.

    Article  PubMed  Google Scholar 

  72. Kooshkabadi A, Lunsford LD, Tonetti D, Flickinger JC, Kondziolka D. Gamma Knife thalamotomy for tremor in the magnetic resonance imaging era. J Neurosurg. 2013;118:713–8.

    Article  PubMed  Google Scholar 

  73. Medel R, Monteith SJ, Elias WJ, Eames M, Snell J, Sheehan JP, et al. Magnetic resonance-guided focused ultrasound surgery: Part 2: a review of current and future applications. Neurosurgery. 2012;71:755–63.

    Article  PubMed  Google Scholar 

  74. Monteith S, Sheehan J, Medel R, Wintermark M, Eames M, Snell J, et al. Potential intracranial applications of magnetic resonance-guided focused ultrasound surgery. J Neurosurg. 2013;118:215–21.

    Article  PubMed  Google Scholar 

  75. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol. 2009;66:858–61.

    Article  PubMed  Google Scholar 

  76. •• Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013;12:462–8. First series of four patients with “non-invasive” focused ultrasound for Vim thalamotomy. A prospective clinical trial of FUS for thalamotomy is underway with larger number of patients directed by W. Elias, University of Virginia.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Robert E. Gross declares board membership for NeuroPace, consultancy for Medtronic, Boston Scientific, St. Judes Medical Corp., Deep Brain Innovations, and Visualase, as well as speakers’ bureaus for Visualase and NeuroPace.

Margaret E. McDougal declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Gross.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, R.E., McDougal, M.E. Technological Advances in the Surgical Treatment of Movement Disorders. Curr Neurol Neurosci Rep 13, 371 (2013). https://doi.org/10.1007/s11910-013-0371-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0371-2

Keywords

Navigation