Skip to main content

Advertisement

Log in

AAV-Mediated Gene Therapy for Atherosclerosis

  • Clinical Trials and Their Interpretations (JR Kizer, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The prognosis of patients with coronary artery disease and stroke has improved substantially over the last decade as a result of advances in primary and secondary preventive care as well as novel interventional approaches, including the development of drug-eluting stents and balloons. Despite this progress, however, cardiovascular disease remains the leading cause of death in industrialized nations. Sustained efforts to elucidate the underlying mechanisms of atherogenesis, reperfusion-induced cardiac injury, and ischemic heart failure have led to the identification of several target genes as key players in the development and progression of atherosclerotic vascular disease. This knowledge has now enabled genetic therapeutic modulation not only for inherited diseases with a single gene defect, such as familial hypercholesterolemia, but also for multifactorial disorders. This review will focus on approaches in adeno-associated viral (AAV)-mediated gene therapy for atherosclerosis and its long-term sequelae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 2013;15:65–77.

    Article  CAS  PubMed  Google Scholar 

  2. Douglas JT. Adenoviral vectors for gene therapy. Mol Biotechnol. 2007;36:71–80.

    Article  CAS  PubMed  Google Scholar 

  3. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2006;2:e60.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 2002;99:11854–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bartel M, Schaffer D, Buning H. Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front Microbiol. 2011;2:204.

    Article  PubMed Central  PubMed  Google Scholar 

  6. McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther J Am Soc Gene Ther. 2008;16:1648–56.

    CAS  Google Scholar 

  7. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199:381–90.

    Article  PubMed  Google Scholar 

  8. Calcedo R, Wilson JM. Humoral immune response to AAV. Front Immunol. 2013;4:341.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Selot RS, Hareendran S, Jayandharan GR. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr Pharm Biotechnol. 2014.

  10. Sniderman AD, Tsimikas S, Fazio S. Severe hypercholesterolemia phenotype: clinical diagnosis, management and emerging therapies. J Am Coll Cardiol. 2014.

  11. Grossman M, Raper SE, Kozarsky K, Stein EA, Engelhardt JF, Muller D, et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet. 1994;6:335–41.

    Article  CAS  PubMed  Google Scholar 

  12. Chen SJ, Rader DJ, Tazelaar J, Kawashiri M, Gao G, Wilson JM. Prolonged correction of hyperlipidemia in mice with familial hypercholesterolemia using an adeno-associated viral vector expressing very-low-density lipoprotein receptor. Mol Ther J Am Soc Gene Ther. 2000;2:256–61.

    CAS  Google Scholar 

  13. Lebherz C, Gao G, Louboutin JP, Millar J, Rader D, Wilson JM. Gene therapy with novel adeno-associated virus vectors substantially diminishes atherosclerosis in a murine model of familial hypercholesterolemia. J Gene Med. 2004;6:663–72.

    Article  CAS  PubMed  Google Scholar 

  14. Kassim SH, Li H, Bell P, Somanathan S, Lagor W, Jacobs F, et al. Adeno-associated virus serotype 8 gene therapy leads to significant lowering of plasma cholesterol levels in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia. Hum Gene Ther. 2013;24:19–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kitajima K, Marchadier DH, Miller GC, Gao GP, Wilson JM, Rader DJ. Complete prevention of atherosclerosis in apoE-deficient mice by hepatic human apoE gene transfer with adeno-associated virus serotypes 7 and 8. Arterioscler Thromb Vasc Biol. 2006;26:1852–7.

    Article  CAS  PubMed  Google Scholar 

  16. Evans V, Foster H, Graham IR, Foster K, Athanasopoulos T, Simons JP, et al. Human apolipoprotein E expression from mouse skeletal muscle by electrotransfer of nonviral DNA (plasmid) and pseudotyped recombinant adeno-associated virus (AAV2/7). Hum Gene Ther. 2008;19:569–78.

    Article  CAS  PubMed  Google Scholar 

  17. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther. 2011;22:1239–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhou J, Xu L, Huang RS, Huang Y, Le Y, Jiang D, et al. Apolipoprotein A5 gene variants and the risk of coronary heart disease: a casecontrol study and metaanalysis. Mol Med Rep. 2013;8:1175–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Sharma V, Beckstead JA, Simonsen JB, Nelbach L, Watson G, Forte TM, et al. Gene transfer of apolipoprotein A-V improves the hypertriglyceridemic phenotype of apoa5 (-/-) mice. Arterioscler Thromb Vasc Biol. 2013;33:474–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kitajima K, Marchadier DH, Burstein H, Rader DJ. Persistent liver expression of murine apoA-l using vectors based on adeno-associated viral vectors serotypes 5 and 1. Atherosclerosis. 2006;186:65–73.

    Article  CAS  PubMed  Google Scholar 

  21. Vaessen SF, Veldman RJ, Comijn EM, Snapper J, Sierts JA, van den Oever K, et al. AAV gene therapy as a means to increase apolipoprotein (Apo) A-I and high-density lipoprotein-cholesterol levels: correction of murine ApoA-I deficiency. J Gene Med. 2009;11:697–707.

    Article  CAS  PubMed  Google Scholar 

  22. Lebherz C, Sanmiguel J, Wilson JM, Rader DJ. Gene transfer of wild-type apoA-I and apoA-I Milano reduce atherosclerosis to a similar extent. Cardiovasc Diabetol. 2007;6:15.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Koornneef A, Maczuga P, van Logtenstein R, Borel F, Blits B, Ritsema T, et al. Apolipoprotein B knockdown by AAV-delivered shRNA lowers plasma cholesterol in mice. Mol Ther J Am Soc Gene Ther. 2011;19:731–40. This study proves that AAV-mediated gene therapy can also be used to knock down selected genes by combining the tools of viral gene transfer and RNA interference.

    CAS  Google Scholar 

  24. Maczuga P, Verheij J, van der Loos C, van Logtenstein R, Hooijer G, Martier R, et al. Therapeutic expression of hairpins targeting apolipoprotein B100 induces phenotypic and transcriptome changes in murine liver. Gene Ther. 2014;21:60–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE. 2012;7:e49006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Thomas GS, Cromwell WC, Ali S, Chin W, Flaim JD, Davidson M. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2013;62:2178–84.

    Article  CAS  PubMed  Google Scholar 

  27. Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126:2283–92.

    Article  CAS  PubMed  Google Scholar 

  28. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383:60–8.

    Article  CAS  PubMed  Google Scholar 

  29. Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA J Am Med Assoc. 2014;311:1870–82.

    Article  Google Scholar 

  30. Kastelein JJ, Robinson JG, Farnier M, Krempf M, Langslet G, Lorenzato C, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia not adequately controlled with current lipid-lowering therapy: design and rationale of the ODYSSEY FH studies. Cardiovasc Drugs Ther/Sponsored Int Soc Cardiovasc Pharmacother. 2014.

  31. Grimm D, Kay MA. RNAi and gene therapy: a mutual attraction. Hematology / Educ Program Am Soc Hematol Am Soc Hematol Educ Program. 2007:473–81.

  32. Neuber C, Muller OJ, Hansen FC, Eder A, Witten A, Ruhle F, et al. Paradoxical effects on force generation after efficient beta1-adrenoceptor knockdown in reconstituted heart tissue. J Pharmacol Exp Ther. 2014;349:39–46.

    Article  CAS  PubMed  Google Scholar 

  33. Piras BA, O'Connor DM, French BA. Systemic delivery of shRNA by AAV9 provides highly efficient knockdown of ubiquitously expressed GFP in mouse heart, but not liver. PLoS ONE. 2013;8:e75894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Liu Y, Li D, Chen J, Xie J, Bandyopadhyay S, Zhang D, et al. Inhibition of atherogenesis in LDLR knockout mice by systemic delivery of adeno-associated virus type 2-hIL-10. Atherosclerosis. 2006;188:19–27.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshioka T, Okada T, Maeda Y, Ikeda U, Shimpo M, Nomoto T, et al. Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Ther. 2004;11:1772–9.

    Article  CAS  PubMed  Google Scholar 

  36. Khan JA, Cao M, Kang BY, Liu Y, Mehta JL, Hermonat PL. AAV/hSTAT3-gene delivery lowers aortic inflammatory cell infiltration in LDLR KO mice on high cholesterol. Atherosclerosis. 2010;213:59–66.

    Article  CAS  PubMed  Google Scholar 

  37. Cao M, Khan JA, Kang BY, Mehta JL, Hermonat PL. Dual AAV/IL-10 plus STAT3 anti-inflammatory gene delivery lowers atherosclerosis in LDLR KO mice, but without increased benefit. Int J Vasc Med. 2012;2012:524235.

    PubMed Central  PubMed  Google Scholar 

  38. Li D, Liu Y, Chen J, Velchala N, Amani F, Nemarkommula A, et al. Suppression of atherogenesis by delivery of TGFbeta1ACT using adeno-associated virus type 2 in LDLR knockout mice. Biochem Biophys Res Commun. 2006;344:701–7.

    Article  CAS  PubMed  Google Scholar 

  39. Jalkanen J, Leppanen P, Pajusola K, Narvanen O, Mahonen A, Vahakangas E, et al. Adeno-associated virus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor reduces atherosclerotic lesion formation in LDL receptor knockout mice. Mol Ther J Am Soc Gene Ther. 2003;8:903–10.

    CAS  Google Scholar 

  40. Rowzee AM, Cawley NX, Chiorini JA, Di Pasquale G. Glucagon-like peptide-1 gene therapy. Exp Diabetes Res. 2011;2011:601047.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wang J, Wang F, Xu J, Ding S, Guo Y. Double-strand adeno-associated virus-mediated exendin-4 expression in salivary glands is efficient in a diabetic rat model. Diabetes Res Clin Pract. 2014;103:466–73.

    Article  CAS  PubMed  Google Scholar 

  42. Gaddy DF, Riedel MJ, Pejawar-Gaddy S, Kieffer TJ, Robbins PD. In vivo expression of HGF/NK1 and GLP-1 From dsAAV vectors enhances pancreatic ss-cell proliferation and improves pathology in the db/db mouse model of diabetes. Diabetes. 2010;59:3108–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Burgmaier M, Liberman A, Mollmann J, Kahles F, Reith S, Lebherz C, et al. Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe(-)/(-) mice. Atherosclerosis. 2013;231:427–35.

    Article  CAS  PubMed  Google Scholar 

  44. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.

    Article  CAS  PubMed  Google Scholar 

  45. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35.

    Article  CAS  PubMed  Google Scholar 

  46. Zouein FA, Booz GW. AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling. F1000Prime Rep. 2013;5:27.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Scimia MC, Gumpert AM, Koch WJ. Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther. 2014;14:183–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zsebo K, Yaroshinsky A, Rudy JJ, Wagner K, Greenberg B, Jessup M, et al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res. 2014;114:101–8. A landmark study evaluating the effects of AAV SERCA gene transfer in patients with heart failure.

    Article  CAS  PubMed  Google Scholar 

  49. Lebherz C, Auricchio A, Maguire AM, Rivera VM, Tang W, Grant RL, et al. Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates. Hum Gene Ther. 2005;16:178–86.

    Article  CAS  PubMed  Google Scholar 

  50. Su H, Arakawa-Hoyt J, Kan YW. Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci U S A. 2002;99:9480–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pachori AS, Melo LG, Hart ML, Noiseux N, Zhang L, Morello F, et al. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury. Proc Natl Acad Sci U S A. 2004;101:12282–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. High KA. The gene therapy journey for hemophilia: are we there yet? Hematology / Educ Program Am Soc Hematol Am Soc Hematol Educ Program. 2012;2012:375–81.

    Google Scholar 

  53. Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 2013;20:361–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Michael Lehrke and Corinna Lebherz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Lebherz.

Additional information

This article is part of the Topical Collection on Clinical Trials and Their Interpretations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehrke, M., Lebherz, C. AAV-Mediated Gene Therapy for Atherosclerosis. Curr Atheroscler Rep 16, 434 (2014). https://doi.org/10.1007/s11883-014-0434-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0434-0

Keywords

Navigation