Skip to main content

Advertisement

Log in

Adenoviral vectors for gene therapy

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Vectors based on human adenovirus serotypes 2 (Ad2) and 5 (Ad5) of species C possess a number of features that have favored their widespread employment for gene delivery both in␣vitro and in␣vivo. However, the use of recombinant Ad2- and Ad5-based vectors for gene therapy also suffers from a number of disadvantages. These vectors possess the tropism of the parental viruses, which infect all cells that possess the appropriate surface receptors, precluding the targeting of specific cell types. Conversely, some cell types that represent important targets for gene transfer express only low levels of the cellular receptors, which lead to inefficient infection. Another major disadvantage of Ad2- and Ad5-based vectors in␣vivo is the elicitation of both an innate and an acquired immune response. Considerable attention has therefore been focused on strategies to overcome these limitations, thereby permitting the full potential of adenoviral vectors to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkner, K. L. (1988). Development of adenovirus vectors for the expression of heterologous genes. Biotechniques, 6, 616–629.

    PubMed  CAS  Google Scholar 

  2. ICTVdB ––The Universal Virus Database, http://www.ncbi.nlm. nih.gov/ICTVdb/ICTVdB/.

  3. Shenk , T. (1996). Adenoviridae: The viruses and their replication. In B. N. Fields, et al. (Eds.), Fields virology (pp. 2111–2148). Philadelphia, PA, State: Lippincott-Raven Publishers.

    Google Scholar 

  4. Kovesdi, I., Brough, D. E., Bruder, J. T., & Wickham, T. J. (1997). Adenoviral vectors for gene transfer. Currrent Opinion in Biotechnology, 8, 583–589.

    Article  CAS  Google Scholar 

  5. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L., & Finberg, R. W. (1997). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science, 275, 1320–1323.

    Article  PubMed  CAS  Google Scholar 

  6. Tomko, R. P., Xu, R., & Philipson, L. (1997). HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proceedings of the National Academy of Sciences of the United States of America, 94, 3352–3356.

    Article  PubMed  CAS  Google Scholar 

  7. Henry, L. J., Xia, D., Wilke, M. E., Deisenhofer, J., & Gerard, R. D. (1994). Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. Journal of Virology, 68, 5239–5246.

    PubMed  CAS  Google Scholar 

  8. Louis, N., Fender, P., Barge, A., Kitts, P., & Chroboczek, J. (1994). Cell-binding domain of adenovirus serotype 2 fiber. Journal of Virology, 68, 4104–4106.

    PubMed  CAS  Google Scholar 

  9. Leon, R. P., Hedlund, T., Meech, S. J., Li, S., Schaack, J., Hunger, S. P., Duke, R. C., & DeGregori, J. (1998). Adenoviral-mediated gene transfer in lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 95, 13159–13164.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, X., & Bergelson, J. M. (1999). Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. Journal of Virology, 73, 2559–2562.

    PubMed  CAS  Google Scholar 

  11. Bai, M., Harfe, B., & Freimuth, P. (1993). Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. Journal of Virology, 67, 5198–5205.

    PubMed  CAS  Google Scholar 

  12. Wickham, T. J., Mathias, P., Cheresh, D. A., & Nemerow, G. R. (1993). Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell, 73, 309–319.

    Article  PubMed  CAS  Google Scholar 

  13. Danthinne, X., & Imperiale, M. J. (2000). Production of first generation adenovirus vectors: A review. Gene Therapy, 7, 1707–1714.

    Article  PubMed  CAS  Google Scholar 

  14. Chinnadurai, G., Chinnadurai, S., & Brusca, J. (1979). Physical mapping of a large-plaque mutation of adenovirus type 2. Journal of Virology, 32, 623–628.

    PubMed  CAS  Google Scholar 

  15. McGrory, W. J., Bautista, D. S., & Graham, F. L. (1988). A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology, 163, 614–617.

    Article  PubMed  CAS  Google Scholar 

  16. Bett, A. J., Haddara, W., Prevec, L., & Graham, F. L. (1994). An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proceedings of the National Academy of Sciences of the United States of America, 91, 8802–8806.

    Article  PubMed  CAS  Google Scholar 

  17. Chartier, C., Degryse, E., Gantzer, M., Dieterle, A., Pavirani, A., & Mehtali, M. (1996). Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. Journal of Virology, 70, 4805–4810.

    PubMed  CAS  Google Scholar 

  18. Crouzet, J., Naudin, L., Orsini, C., Vigne, E., Ferrero, L., Le Roux, A., Benoit, P., Latta, M., Torrent, C., Branellec, D., Denefle, P., Mayaux, J. F., Perricaudet, M., & Yeh, P. (1997). Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proceedings of the National Academy of Sciences of the United States of America, 94, 1414–1419.

    Article  PubMed  CAS  Google Scholar 

  19. He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., & Vogelstein, B. (1998). A simplified system for generating recombinant adenoviruses. Proceedings of the National Academy of Sciences of the United States of America, 95, 2509–2514.

    Article  PubMed  CAS  Google Scholar 

  20. Graham, F. L., Smiley, J., Russell, W. C., & Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. The Journal of General Virology, 36, 59–74.

    PubMed  CAS  Google Scholar 

  21. Lochmuller, H., Jani, A., Huard, J., Prescott, S., Simoneau, M., Massie, B., Karpati, G., & Acsadi, G. (1994). Emergence of early region 1-containing replication-competent adenovirus in stocks of replication-defective adenovirus recombinants (delta E1 + delta E3) during multiple passages in 293 cells. Human Gene Therapy, 5, 1485–1491.

    PubMed  CAS  Google Scholar 

  22. Fallaux, F. J., Bout, A., van der Velde, I., van den Wollenberg, D. J., Hehir, K. M., Keegan, J., Auger, C., Cramer, S. J., van Ormondt, H., van der Eb, A. J., Valerio, D., & Hoeben, R. C. (1998). New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Human Gene Therapy, 9, 1909–1917.

    PubMed  CAS  Google Scholar 

  23. Gao, G. P., Engdahl, R. K., & Wilson, J. M. (2000). A cell line for high-yield production of E1-deleted adenovirus vectors without the emergence of replication-competent virus. Human Gene Therapy, 11, 213–219.

    Article  PubMed  CAS  Google Scholar 

  24. Shabram P., Vellekamp G., & Scandella C. (2002). Purification of adenovirus. In D. T. Curiel & J. T. Douglas (Eds.), Adenoviral vectors for gene therapy (pp. 167–204). New York, NY, State: Academic Press.

    Google Scholar 

  25. Mittereder, N., March, K. L., & Trapnell, B. C. (1996). Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. Journal of Virology, 70, 7498–7509.

    PubMed  CAS  Google Scholar 

  26. Maizel, J. V. Jr., White, D. O., & Scharff, M. D. (1968). The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology, 36, 115–125.

    Article  PubMed  CAS  Google Scholar 

  27. Curiel, D. T., & Douglas, J. T. (2002). Adenoviral vectors for gene therapy. New York, NY, State: Academic Press.

    Google Scholar 

  28. Vectors used in gene therapy clinical trials (2006). In Gene therapy clinical trials worldwide. http://www.wiley.co.uk/genmed/clinical/.

  29. Roth, J. A. (2006). Adenovirus p53 gene therapy. Expert Opinion on Biological Therapy, 6, 55–61.

    Article  PubMed  CAS  Google Scholar 

  30. Gingrich, J. R. (1999). Protocol 9909–338. A tolerance and efficacy study of neoadjuvant intraprostatic GTx-001 followed by radical prostatectomy in patients with locally advanced prostate cancer. http://www4.od.nih.gov/oba/rac/PROTOCOL.pdf.

  31. Deshane, J., Siegal, G. P., Alvarez, R. D., Wang, M. H., Feng, M., Cabrera, G., Liu, T., Kay, M., & Curiel, D. T. (1995). Targeted tumor killing via an intracellular antibody against erbB-2. The Journal of Clinical Investigation, 96, 2980–2989.

    PubMed  CAS  Google Scholar 

  32. Alvarez, R. D., Barnes, M. N., Gomez-Navarro, J., Wang, M., Strong, T. V., Arafat, W., Arani, R. B., Johnson, M. R., Roberts, B. L., Siegal, G. P., & Curiel, D. T. (2000). A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clinical Cancer Research, 6, 3081–3087.

    PubMed  CAS  Google Scholar 

  33. Peng, Z. (2005). Current status of Gendicine in China: Recombinant human Ad-p53 agent for treatment of cancers. Human Gene Therapy, 16, 1016–1027.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson, J. M. (2005). Gendicine: The first commercial gene therapy product. Human Gene Therapy, 16, 1014–1015.

    Article  PubMed  CAS  Google Scholar 

  35. Gabrilovich, D. I. (2006). INGN 201 (Advexin): Adenoviral p53 gene therapy for cancer. Expert Opinion on Biological Therapy, 6, 823–832.

    Article  PubMed  CAS  Google Scholar 

  36. Gao, M. H., Lai, N. C., McKirnan, M. D., Roth, D. A., Rubanyi, G. M., Dalton, N., Roth, D. M., & Hammond, H. K. (2004). Increased regional function and perfusion after intracoronary delivery of adenovirus encoding fibroblast growth factor 4: Report of preclinical data. Human Gene Therapy, 15, 574–587.

    Article  PubMed  CAS  Google Scholar 

  37. Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R., Davies, M. E., Evans, R. K., Zhang, Z. Q., Simon, A. J., Trigona, W. L., Dubey, S. A., Huang, L., Harris, V. A., Long, R. S., Liang, X., Handt, L., Schleif, W. A., Zhu, L., Freed, D. C., Persaud, N. V., Guan, L., Punt, K. S., Tang, A., Chen, M., Wilson, K. A., Collins, K. B., Heidecker, G. J., Fernandez, V. R., Perry, H. C., Joyce, J. G., Grimm, K. M., Cook, J. C., Keller, P. M., Kresock, D. S., Mach, H., Troutman, R. D., Isopi, L. A., Williams, D. M., Xu, Z., Bohannon, K. E., Volkin, D. B., Montefiori, D. C., Miura, A., Krivulka, G. R., Lifton, M. A., Kuroda, M. J., Schmitz, J. E., Letvin, N. L., Caulfield, M. J., Bett, A. J., Youil, R., Kaslow, D. C., & Emini, E. A. (2002). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 415, 331–335.

    Article  PubMed  CAS  Google Scholar 

  38. Sullivan, N. J., Geisbert, T. W., Geisbert, J. B., Xu, L., Yang, Z. Y., Roederer, M., Koup, R. A., Jahrling, P. B., & Nabel, G. J. (2003). Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature, 424, 681–684.

    Article  PubMed  CAS  Google Scholar 

  39. Santosuosso, M., McCormick, S., Zhang, X., Zganiacz, A., & Xing, Z. (2006). Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infection and Immunity, 74, 4634–4643.

    Article  PubMed  CAS  Google Scholar 

  40. Plog, M. S., Guyre, C. A., Roberts, B. L., Goldberg, M., St George, J. A., & Perricone, M. A. (2006). Preclinical safety and biodistribution of adenovirus-based cancer vaccines after intradermal delivery. Human Gene Therapy, 17, 705–716.

    Article  PubMed  CAS  Google Scholar 

  41. Miller, C. R., Buchsbaum, D. J., Reynolds, P. N., Douglas, J. T., Gillespie, G. Y., Mayo, M. S., Raben, D., & Curiel, D. T. (1998). Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Research, 58, 5738–5748.

    PubMed  CAS  Google Scholar 

  42. Kim, M., Zinn, K. R., Barnett, B. G., Sumerel, L. A., Krasnykh, V., Curiel, D. T., & Douglas, J. T. (2002). The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. European Journal of Cancer, 38, 1917–1926.

    Article  PubMed  CAS  Google Scholar 

  43. Zabner, J., Freimuth, P., Puga, A., Fabrega, A., & Welsh, M. J. (1997). Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection. The Journal of Clinical Investion, 100, 1144–1149.

    Article  CAS  Google Scholar 

  44. Nalbantoglu, J., Pari, G., Karpati, G., & Holland, P. C. (1999). Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Human Gene Therapy, 10, 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  45. Tillman, B. W., Gruijl, T. D., Bakker, S. A., Scheper, R. J., Pinedo, H. M., Curiel, T. J., Gerritsen, W. R., & Curiel, D. T. (1999). Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. Journal of Immunology, 162, 6378–6383.

    CAS  Google Scholar 

  46. Barnett, B. G., Crews, C. J., & Douglas, J. T. (2002). Targeted adenoviral vectors. Biochimica et Biophysica Acta, 1575, 1–14.

    Google Scholar 

  47. Douglas, J. T., Rogers, B. E., Rosenfeld, M. E., Michael, S. I., Feng, M., & Curiel, D. T. (1996). Targeted gene delivery by tropism-modified adenoviral vectors. Nature Biotechnology, 14, 1574–1578.

    Article  PubMed  CAS  Google Scholar 

  48. Dmitriev, I., Kashentseva, E., Rogers, B. E., Krasnykh, V., & Curiel, D. T. (2000). Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. Journal of Virology, 74, 6875–6884.

    Article  PubMed  CAS  Google Scholar 

  49. Krasnykh, V. N., Douglas, J. T., & van Beuschem, V. W. (2000). Genetic targeting of adenoviral vectors. Molecular Therapy, 1, 391–405.

    Article  PubMed  CAS  Google Scholar 

  50. Kanerva, A., Mikheeva, G. V., Krasnykh, V., Coolidge, C. J., Lam, J. T., Mahasreshti, P. J., Barker, S. D., Straughn, M., Barnes, M. N., Alvarez, R. D., Hemminki, A., & Curiel, D. T. (2002). Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clinical Cancer Research, 8, 275–280.

    PubMed  CAS  Google Scholar 

  51. Mizuguchi, H., Hayakawa, T. (2002). Adenovirus vectors containing chimeric type 5 and type 35 fiber proteins exhibit altered and expanded tropism and increase the size limit of foreign genes. Gene, 285, 69–77.

    Article  PubMed  CAS  Google Scholar 

  52. Dmitriev, I., Krasnykh, V., Miller, C. R., Wang, M., Kashentseva, E., Mikheeva, G., Belousova, N., & Curiel, D. T. (1998). An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. Journal of Virology, 72, 9706–9713.

    PubMed  CAS  Google Scholar 

  53. Krasnykh, V., Belousova, N., Korokhov, N., Mikheeva, G., & Curiel, D. T. (2001). Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. Journal of Virology, 75, 4176–4183.

    Article  PubMed  CAS  Google Scholar 

  54. Belousova, N., Korokhov, N., Krendelshchikova, V., Simonenko, V., Mikheeva, G., Triozzi, P. L., Aldrich, W. A., Banerjee, P. T., Gillies, S. D., Curiel, D. T., & Krasnykh, V. (2003). Genetically targeted adenovirus vector directed to CD40-expressing cells. Journal of Virology, 77, 11367–11377.

    Article  PubMed  CAS  Google Scholar 

  55. Belousova, N., Korokhov, N., Krendelshchikova, V., Simonenko, V., Mikheeva, G., Triozzi, P. L., Aldrich, W. A., Banerjee, P. T., Gillies, S. D., Curiel, D. T., & Krasnykh, V. (2003). Genetically targeted adenovirus vector directed to CD40-expressing cells. Journal of Virology, 77, 11367–11377.

    Article  PubMed  CAS  Google Scholar 

  56. Barnett, B. G., Tillman, B. W., Curiel, D. T., & Douglas, J. T. (2002). Dual targeting of adenoviral vectors at the levels of transduction and transcription enhances the specificity of gene expression in cancer cells. Molecular Therapy, 6, 377–385.

    Article  PubMed  CAS  Google Scholar 

  57. Lyons, M., Onion, D., Green, N. K., Aslan, K., Rajaratnam, R., Bazan-Peregrino, M., Phipps, S., Hale, S., Mautner, V., Seymour, L. W., & Fisher, K. D. (2006). Adenovirus type 5 interactions with human blood cells may compromise systemic delivery. Molecular Therapy, 14, 118–128.

    Article  PubMed  CAS  Google Scholar 

  58. Shayakhmetov, D. M., Gaggar, A., Ni, S., Li, Z. Y., & Lieber, A. (2005). Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. Journal of Virology, 79, 7478–7491.

    Article  PubMed  CAS  Google Scholar 

  59. Fechner, H., Haack, A., Wang, H., Wang, X., Eizema, K., Pauschinger, M., Schoemaker, R., Veghel, R., Houtsmuller, A., Schultheiss, H. P., Lamers, J., & Poller, W. (1999). Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy, 6, 1520–1535.

    Article  PubMed  CAS  Google Scholar 

  60. Shayakhmetov, D. M., Li, Z. Y., Ni, S., & Lieber, A. (2002). Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Research, 62, 1063–1068.

    PubMed  CAS  Google Scholar 

  61. Brenner, M. (1999). Gene transfer by adenovectors. Blood, 94, 3965–3967.

    PubMed  CAS  Google Scholar 

  62. Young, L. S., & Mautner, V. (2001). The promise and potential hazards of adenovirus gene therapy. Gut, 48, 733–736.

    Article  PubMed  CAS  Google Scholar 

  63. Geddes, B. J., Harding, T. C., Hughes, D. S., Byrnes, A. P., Lightman, S. L., Conde, G., & Uney, J. B. (1996). Persistent transgene expression in the hypothalamus following stereotaxic delivery of a recombinant adenovirus: suppression of the immune response with cyclosporin. Endocrinology, 137, 5166–5169.

    Article  PubMed  CAS  Google Scholar 

  64. Jooss, K., Turka, L. A., & Wilson, J. M. (1998). Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig. Gene Therapy, 5, 309–319.

    Article  PubMed  CAS  Google Scholar 

  65. Lemckert, A. A., Grimbergen, J., Smits, S., Hartkoorn, E., Holterman, L., Berkhout, B., Barouch, D. H., Vogels, R., Quax, P., Goudsmit, J., & Havenga, M. J. (2006). Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus type 49: Manufacture on PER.C6 cells, tropism and immunogenicity. The Journal of General Virology, 87, 2891–2899.

    Article  PubMed  CAS  Google Scholar 

  66. Kobinger, G. P., Feldmann, H., Zhi, Y., Schumer, G., Gao, G., Feldmann, F., Jones, S., & Wilson, J. M. (2006). Chimpanzee adenovirus vaccine protects against Zaire Ebola virus. Virology, 346, 394–401.

    Article  PubMed  CAS  Google Scholar 

  67. Roberts, D. M., Nanda, A., Havenga, M. J., Abbink, P., Lynch, D. M., Ewald, B. A., Liu, J., Thorner, A. R., Swanson, P. E., Gorgone, D. A., Lifton, M. A., Lemckert, A. A., Holterman, L., Chen, B., Dilraj, A., Carville, A., Mansfield, K. G., Goudsmit, J., & Barouch, D. H. (2006). Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature, 441, 239–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory is supported by NIH grant R01 CA 108585 and DOD grant W81XWH-04-1-0800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne T. Douglas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, J.T. Adenoviral vectors for gene therapy. Mol Biotechnol 36, 71–80 (2007). https://doi.org/10.1007/s12033-007-0021-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0021-5

Keywords

Navigation