Skip to main content
Log in

Future Therapeutic Directions in Reverse Cholesterol Transport

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Despite a robust inverse association between high-density lipoprotein (HDL) cholesterol levels and atherosclerotic cardiovascular disease, the development of new therapies based on pharmacologic enhancement of HDL metabolism has proven challenging. Emerging evidence suggests that static measurement of HDL levels has inherent limitations as a surrogate for overall HDL functionality, particularly with regard to the rate of flux through the macrophage reverse cholesterol transport (RCT) pathway. Recent research has provided important insight into the molecular underpinnings of RCT, the process by which excess cellular cholesterol is effluxed from peripheral tissues and returned to the liver for ultimate intestinal excretion. This review discusses the critical importance and current strategies for quantifying RCT flux. It also highlights therapeutic strategies for augmenting macrophage RCT via three conceptual approaches: 1) improved efflux of cellular cholesterol via targeting the macrophage; 2) enhanced cholesterol efflux acceptor functionality of circulating HDL; and 3) increased hepatic uptake and biliary/intestinal excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Miller GJ, Miller NE: Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1975, 1:16–19.

    Article  PubMed  CAS  Google Scholar 

  2. Gordon DJ: High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79:8–15.

    PubMed  CAS  Google Scholar 

  3. Singh IM, Shishehbor MH, Ansell BJ: High-density lipoprotein as a therapeutic target: a systematic review. JAMA 2007, 298:786–798.

    Article  PubMed  CAS  Google Scholar 

  4. • Briel M, Ferreira-Gonzalez I, You JJ, et al.: Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 2009, 338:b92. This provocative meta-analysis suggested that increased HDL-C levels explain minimal variability with regard to clinical outcomes, reinforcing the need to move beyond simple measures of HDL-C quantity as surrogates of clinical efficacy.

    Article  PubMed  CAS  Google Scholar 

  5. Tall AR: Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 2008, 263:256–273.

    Article  PubMed  CAS  Google Scholar 

  6. Glomset JA: The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res 1968, 9:155–167.

    PubMed  CAS  Google Scholar 

  7. Tall AR, Wang N, Mucksavage P: Is it time to modify the reverse cholesterol transport model? J Clin Invest 2001, 108:1273–1275.

    PubMed  CAS  Google Scholar 

  8. Cuchel M, Rader DJ: Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 2006, 113:2548–2555.

    Article  PubMed  Google Scholar 

  9. Rader DJ, Alexander ET, Weibel GL, et al.: The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009, 50:S189–S194.

    Article  PubMed  CAS  Google Scholar 

  10. de la Llera Moya M, Atger V, Paul JL, et al.: A cell culture system for screening human serum for ability to promote cellular cholesterol efflux. Relations between serum components and efflux, esterification, and transfer. Arterioscler Thromb 1994, 14:1056–1065.

    PubMed  Google Scholar 

  11. Venkateswaran A, Laffitte BA, Joseph SB, et al.: Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 2000, 97:12097–12102.

    Article  PubMed  CAS  Google Scholar 

  12. • Patel S, Drew BG, Nakhla S, et al.: Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J Am Coll Cardiol 2009, 53:962–971. This is a recent study that applied an HDL panel to study multiple aspects of HDL functionality before and after a therapeutic intervention.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Zanotti I, Reilly MP, et al.: Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 2003, 108:661–663.

    Article  PubMed  CAS  Google Scholar 

  14. Kozarsky KF, Donahee MH, Glick JM, et al.: Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 2000, 20:721–727.

    PubMed  CAS  Google Scholar 

  15. Arai T, Wang N, Bezouevski M, et al.: Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem 1999, 274:2366–2371.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Da Silva JR, Reilly M, et al.: Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 2005, 115:2870–2874.

    Article  PubMed  CAS  Google Scholar 

  17. Czubayko F, Beumers B, Lammsfuss S, et al.: A simplified micro-method for quantification of fecal excretion of neutral and acidic sterols for outpatient studies in humans. J Lipid Res 1991, 32:1861–1867.

    PubMed  CAS  Google Scholar 

  18. Eriksson M, Carlson LA, Miettinen TA, et al.: Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans. Circulation 1999, 100:594–598.

    PubMed  CAS  Google Scholar 

  19. • deGoma EM, deGoma RL, Rader DJ: Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol 2008, 51:2199–2211. This review outlines current thinking on HDL functionality, particularly with regard to measurement of HDL’s pleiotropic beneficial effects.

    Article  CAS  Google Scholar 

  20. Wang X, Collins HL, Ranalletta M, et al.: Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 2007, 117:2216–2224.

    Article  PubMed  CAS  Google Scholar 

  21. •• Yvan-Charvet L, Ranalletta M, Wang N, et al.: Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 2007, 117:3900–3908. This study in mice provided compelling evidence that ABCA1 and ABCG1 activity decreases atherosclerosis via enhanced cellular cholesterol efflux.

    PubMed  CAS  Google Scholar 

  22. Out R, Hoekstra M, Habets K, et al.: Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler Thromb Vasc Biol 2008, 28:258–264.

    Article  PubMed  CAS  Google Scholar 

  23. Rust S, Rosier M, Funke H, et al.: Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999, 22:352–355.

    Article  PubMed  CAS  Google Scholar 

  24. Bodzioch M, Orsó E, Klucken J, et al.: The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999, 22:347–351.

    Article  PubMed  CAS  Google Scholar 

  25. Brooks-Wilson A, Marcil M, Clee SM, et al.: Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999, 22:336–345.

    Article  PubMed  CAS  Google Scholar 

  26. van Dam MJ, de Groot E, Clee SM, et al.: Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux: an observational study. Lancet 2002, 359:37–42.

    Article  PubMed  Google Scholar 

  27. Repa JJ, Turley SD, Lobaccaro JA, et al.: Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000, 289:1524–1529.

    Article  PubMed  CAS  Google Scholar 

  28. Naik SU, Wang X, Da Silva JS,et al.: Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006,113:90–97.

    Article  PubMed  CAS  Google Scholar 

  29. Terasaka N, Hiroshima A, Koieyama T, et al.: T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett 2003, 536:6–11.

    Article  PubMed  CAS  Google Scholar 

  30. Joseph SB, McKilligin E, Pei L, et al.: Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 2002, 99:7604–7609.

    Article  PubMed  CAS  Google Scholar 

  31. Li AC, Glass CK: PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 2004, 45:2161–2173.

    Article  PubMed  CAS  Google Scholar 

  32. Groot PH, Pearce NJ, Yates JW, et al.: Synthetic LXR agonists increase LDL in CETP species. J Lipid Res 2005, 46:2182–2191.

    Article  PubMed  CAS  Google Scholar 

  33. Levin N, Bischoff ED, Daige CL, et al.: Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 2005, 25:135–142.

    Article  PubMed  CAS  Google Scholar 

  34. Teupser D, Kretzschmar D, Tennert C, et al.: Effect of macrophage overexpression of murine liver X receptor-alpha (LXR-alpha) on atherosclerosis in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol 2008, 28:2009–2015.

    Article  PubMed  CAS  Google Scholar 

  35. Molteni V, Li X, Nabakka J, et al.: N-Acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRbeta. J Med Chem 2007, 50:4255–4259.

    Article  PubMed  CAS  Google Scholar 

  36. Katz A, Udata C, Ott E, et al.: Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharmacol 2009, 49:643–649.

    Article  PubMed  CAS  Google Scholar 

  37. Tangirala RK, Tsukamoto K, Chun SH, et al.: Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 1999, 100:1816–1822.

    PubMed  CAS  Google Scholar 

  38. ClincialTrials.gov: A Safety, Pharmacokinetic, and Pharmacodynamic Assessment of 28-Dy Oral Dosing of rvX000222 in Healthy subjects and subjects with Low High Density Lipoprotein (HDL). Available at http://clinicaltrials.gov/ct2/show/NCT00768274. Accessed October 8, 2009.

  39. Gordon A, Jahagirdar R, Johannson J, et al.: RVX-208 a Small Molecule That Induces Apolipoprotein A-I Production Progresses to Phase Ib/IIa Clinical Trials. Presented at the American College of Cardiology Scientific Sessions. Orlando, FL; March 28–30, 2009.

  40. Duffy D, Rader DJ: Update on strategies to increase HDL quantity and function. Nat Rev Cardiol 2009, 6:455–463.

    Article  PubMed  Google Scholar 

  41. Millar JS, Duffy D, Gadi R, et al: Potent and selective PPAR-alpha agonist LY518674 upregulates both ApoA-I production and catabolism in human subjects with the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2009, 29:140–146.

    Article  PubMed  CAS  Google Scholar 

  42. Nissen SE, Nicholls SJ, Wolski K, et al.: Effects of a potent and selective PPAR-alpha agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA 2007, 297:1362–1373.

    Article  PubMed  CAS  Google Scholar 

  43. Junichiro T, Tanigawa H, Snehal N, et al.: PPARα agonism promotes reverse cholesterol transport in a macrophage PPAR α and Liver X Receptor dependent manner. Presented at American Heart Association Scientific Sessions. Orlando, FL; November 15–18, 2009.

  44. Badimon JJ, Badimon L, Fuster V: Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990, 85:1234–1241.

    Article  PubMed  CAS  Google Scholar 

  45. Miyazaki A, Sakuma S, Morikawa W, et al.: Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol 1995, 15:1882–1888.

    PubMed  CAS  Google Scholar 

  46. Nanjee MN, Cooke CJ, Garvin R, et al.: Intravenous apoA-I/lecithin discs increase pre-beta-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J Lipid Res 2001, 42:1586–1593.

    PubMed  CAS  Google Scholar 

  47. Tardif JC, Grégoire J, L’Allier PL, et al.: Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 2007, 297:1675–1682.

    Article  PubMed  Google Scholar 

  48. Chiesa G, Sirtori CR: Apolipoprotein A-I(Milano): current perspectives. Curr Opin Lipidol 2003, 14:159–163.

    Article  PubMed  CAS  Google Scholar 

  49. Alexander ET, Weibel GL, Joshi MR, et al.: Macrophage reverse cholesterol transport in mice expressing ApoA-I Milano. Arterioscler Thromb Vasc Biol 2009, 29:1496–1501.

    Article  PubMed  CAS  Google Scholar 

  50. Nissen SE, Tsunoda T, Tuzcu EM, et al.: Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003, 290:2292–2300.

    Article  PubMed  CAS  Google Scholar 

  51. Van Lenten BJ, Wagner AC, Anantharamaiah GM, et al.: Apolipoprotein A-I mimetic peptides. Curr Atheroscler Rep 2009, 11:52–57.

    Article  PubMed  Google Scholar 

  52. Navab M, Anantharamaiah GM, Reddy ST, et al.: Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 2004, 109:3215–3220.

    Article  PubMed  CAS  Google Scholar 

  53. Navab M, Anantharamaiah GM, Hama S, et al.: Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 2002, 105:290–292.

    Article  PubMed  CAS  Google Scholar 

  54. Bloedon LT, Dunbar R, Duffy D, et al.: Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J Lipid Res 2008, 49:1344–1352.

    Article  PubMed  CAS  Google Scholar 

  55. Brown ML, Inazu A, Hesler CB, et al.: Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989, 342:448–451.

    Article  PubMed  CAS  Google Scholar 

  56. Matsuura F, Wang N, Chen W, et al.: HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J Clin Invest 2006, 116:1435–1442.

    Article  PubMed  CAS  Google Scholar 

  57. Yvan-Charvet L, Matsuura F, Wang N, et al.: Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol 2007, 27:1132–1138.

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz CC, VandenBroek JM, Cooper PS.: Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res 2004, 45:1594–1607.

    Article  PubMed  CAS  Google Scholar 

  59. Tanigawa H, Billheimer JT, Tohyama J, et al.: Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 2007, 116:1267–1273.

    Article  PubMed  CAS  Google Scholar 

  60. Tall AR, Yvan-Charvet L, Wang N: The failure of torcetrapib: was it the molecule or the mechanism? Arterioscler Thromb Vasc Biol 2007, 27:257–260.

    Article  PubMed  CAS  Google Scholar 

  61. Brousseau ME, Diffenderfer MR, Millar JS, et al.: Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A-I metabolism, and fecal sterol excretion. Arterioscler Thromb Vasc Biol 2005, 25:1057–1064.

    Article  PubMed  CAS  Google Scholar 

  62. • Barter PJ, Caulfield M, Eriksson M, et al.: Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007, 357:2109–2122. This is a large phase 3 clinical trial that noted a substantial increase in coronary events among those treated with a CETP inhibitor despite substantially increased HDL levels.

    Article  PubMed  CAS  Google Scholar 

  63. Krishna R, Anderson MS, Bergman AJ, et al.: Effect of the cholesteryl estertransfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies. Lancet 2007, 370:1907–1914.

    Article  PubMed  CAS  Google Scholar 

  64. Stein EA, Stroes ES, Steiner G, et al.: Safety and tolerability of dalcetrapib. Am J Cardiol 2009, 104:82–91.

    Article  PubMed  CAS  Google Scholar 

  65. Jaye M, Lynch KJ, Krawiec J, et al.: A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 1999, 21:424–428.

    Article  PubMed  CAS  Google Scholar 

  66. Maugeais C, Tietge UJ, Broedl UC, et al.: Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation 2003, 108:2121–2126.

    Article  PubMed  CAS  Google Scholar 

  67. Jin W, Millar JS, Broedl U, et al.: Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J Clin Invest 2003, 111:357–362.

    PubMed  CAS  Google Scholar 

  68. Edmondson AC, Brown RJ, Kathiresan S, et al.: Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest 2009, 119:1042–1050.

    PubMed  CAS  Google Scholar 

  69. Kathiresan S, Melander O, Guiducci C, et al.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189–197.

    Article  PubMed  CAS  Google Scholar 

  70. Badellino KO, Wolfe ML, Reilly MP, et al.: Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med 2006, 3:e22.

    Article  PubMed  CAS  Google Scholar 

  71. Goodman KB, Bury MJ, Cheung M, et al.: Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg Med Chem Lett 2009, 19:27–30.

    Article  PubMed  CAS  Google Scholar 

  72. Yu L, Hammer RE, Li-Hawkins J, et al.: Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A 2002, 99:16237–16242.

    Article  PubMed  CAS  Google Scholar 

  73. Yu L, Li-Hawkins J, Hammer RE, et al.: Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 2002, 110:671–680.

    PubMed  CAS  Google Scholar 

  74. Berge KE, Tian H, Graf GA, et al.: Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000, 290:1771–1775.

    Article  PubMed  CAS  Google Scholar 

  75. Sehayek E, Hazen SL: Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. Arterioscler Thromb Vasc Biol 2008, 28:1296–1297.

    Article  PubMed  CAS  Google Scholar 

  76. Groen AK, Oude Elferink RP, et al.: The ins and outs of reverse cholesterol transport. Ann Med 2004, 36:135–145.

    Article  PubMed  CAS  Google Scholar 

  77. McGillicuddy FC, de la Llera Moya M, Hinkle CC, et al.: Inflammation impairs reverse cholesterol transport in vivo. Circulation 2009, 119:1135–1145.

    Article  PubMed  CAS  Google Scholar 

  78. Lavie CJ, Milani RV, Mehra MR, et al.: Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol. 2009, 54:585–594.

    Article  PubMed  CAS  Google Scholar 

  79. Nishimoto T, Pellizzon MA, Aihara M, et al.: Fish oil promotes macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol 2009, 29:1502–1508.

    Article  PubMed  CAS  Google Scholar 

  80. Kamisako T, Ogawa H: Effects of pravastatin and bezafibrate on biliary lipid excretion and hepatic expression of Abcg5 and Abcg8 in the rat. J Gastroenterol Hepatol 2004, 19:879–883.

    Article  PubMed  CAS  Google Scholar 

  81. Roglans N, Vázquez-Carrera M, Alegret M, et al.: Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients. Eur J Clin Pharmacol 2004, 59:855–861.

    Article  PubMed  CAS  Google Scholar 

  82. Briand F, Naik SU, Fuki I, et al.: Both the peroxisome proliferator-activated receptor δ agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clin Transl Sci 2009, 2:127–133.

    Article  Google Scholar 

  83. Sprecher DL, Massien C, Pearce G, et al.: Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arterioscler Thromb Vasc Biol 2007, 27:359–365.

    Article  PubMed  CAS  Google Scholar 

  84. van der Veen JN, van Dijk TH, Vrins CL, et al.: Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 2009, 284:19211–19219.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by P01-HL22633 from the National Heart, Lung, and Blood Institute; an Alternative Drug Discovery Initiative award to the University of Pennsylvania from GlaxoSmithKline, and a Doris Duke Charitable Foundation Distinguished Clinical Scientist Award (to DJR).

Disclosure

Dr. Rader serves as a consultant to several companies that market or are developing therapies targeting HDL or RCT, including Abbott, AstraZeneca, Bristol-Myers-Squibb, Eli Lilly, Johnson & Johnson, Merck & Co, Novartis, and Resverlogix. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Rader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khera, A.V., Rader, D.J. Future Therapeutic Directions in Reverse Cholesterol Transport. Curr Atheroscler Rep 12, 73–81 (2010). https://doi.org/10.1007/s11883-009-0080-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0080-0

Keywords

Navigation