Skip to main content

Advertisement

Log in

Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation

  • Basic and Applied Science (I Lewkowich, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses.

Recent Findings

Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses.

Summary

Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. da SIlva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62:698–738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wernersson S, Pejler G. Mast cell secretory granules- armed for battle. Nat Rev Immunol. 2014;14(7):478–94.

    Article  PubMed  CAS  Google Scholar 

  3. Wisniewski J, Agrawal R, Woodfolk JA. Mechanism of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Exp Allergy. 2013;137:984–97.

    Google Scholar 

  4. van Ree R, Hummelshoj L., Plantinga, M., Poulsen, L.K., Swindle, E.: Allergic sensitization: host-immune factors. Clin Transl Allergy. 2014, 4.

  5. Novak N, Allam JP, Bieber T. Allergic hyperreactvity to microbial components: a trigger facotr of “intrinsic” atopic dermatitis? J Allergy Clin Immunol. 2003;112:215–6.

    Article  PubMed  Google Scholar 

  6. Bieber T. Atopic dermatitis. N Engl J Med. 2008;358:1483–94.

    Article  PubMed  CAS  Google Scholar 

  7. McAlpine SM, Enoksson M, Lunderius-Andersson C, Nilsson G. The effect of bacterial, viral and fungal infection on mast cell reactivity in the allergic setting. J Innate Immunol. 2011;3:120–30.

    Article  CAS  Google Scholar 

  8. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Urb M, Pouliot P, Gravelat FN, Olivier M, Sheppard DC. Aspergillus fumigatus induces immunoglobulin E-independent mast cell degranulation. J Infect Dis. 2009;200:464–72.

    Article  PubMed  CAS  Google Scholar 

  10. Ong PY, Leung DYM. Bacterial and viral infections in atopic dermatitis—a comprehensive review. Clin Rev Allergy Immunol. 2016;51:329–37.

    Article  PubMed  CAS  Google Scholar 

  11. Rocha-de-Souza CM, Berent-Maoz B, Mankuta D, Moses AE, Levi-Schaffer F. Human mast cell activation by Staphylococcus aureus: interleukin-8 and tumor necrosis factor alpha release and the role of toll-like receptor 2 and CD48 molecules. Infect Immun. 2008;76:4489–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chaudhary N, Marr KA. Impact of aspergillus fumigatus in allergic airway diseases. Clin Transl Allergy. 2011;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barbosa-Lorenzi VC, Peyda S, Scheynius A, Nilsson G, Lunderius-Andersson C. Curdlan induces selective mast cell degranulation without concomitant release of LTC4, IL-6 or CCL2. Immunobiology. 2017;222:647–50.

    Article  PubMed  CAS  Google Scholar 

  14. Simon T, Laszlo V, Falus A. Impact of histamine on dendritic cell functions. Cell Biol Int. 2011;35:997–1000.

    Article  PubMed  CAS  Google Scholar 

  15. Fehrenbach K, Port F, Grochowy G, Kalis C, Bessler W, Galanos C, et al. Stimulation of mast cells via FceRI and TLR2: the type of ligand determines the outcome. Mol Immunol. 2007;44:2087–94.

    Article  PubMed  CAS  Google Scholar 

  16. Kasakura K, Takahashi K, Aizawa T, Hosono A, Kaminogawa S. A TLR2 ligand suppresses allergic inflammatory reactions by acting directly on mast cells. Int Arch Allergy Immunol. 2009;150:359–69.

    Article  PubMed  CAS  Google Scholar 

  17. Suurmond J, Dorjee AL, Knol EF, Huizinga TWJ, Toe REM. Differential TLR-induced cytokine production by human mast cells is amplified by FcɛRI triggering. Clin Exp Allergy. 2015;45:788–96.

    Article  PubMed  CAS  Google Scholar 

  18. Netea MG, Joosten LA., Latz, E., Mills, K.H., Natoli, G., Stunnenber, H.G., O’Neill, L.A., Xavier, R.J: Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352.

  19. Saluja R, Delin I., Nilsson, G.P., Adner, M.: FceR1-mediated mast cell reactivity is amplified through prolonged toll-like receptor-ligand treatment. PLoS One. 2012;7.

  20. •• Galli SF, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18:693–704. Excellent review of the concept of trained immunity. This paper reviews the process of epigenetic changes in innate cells after encounters with pathogens, which can alter transcription and cellular metabolism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Alenius H, Laouini D, Woodward A, Mizoguchi E, Bhan AK, Castigli E, et al. Mast cells regulate IFN-gamma expression in the skin and circulating IgE levels in allergen-induced skin inflammation. J Allergy Clin Immunol. 2002;109:106–13.

    Article  PubMed  CAS  Google Scholar 

  22. de Boer JD, Yang J, van den Boogaard FE, Hoogendijk AJ, de Beer R, van der Zee JS, Roelofs JJ., van’t Veer C, de Vos C, van der Poll T. Mast cell deficient kit mice develope house dust mite-induced lung inflammation despite impaired eosinophil recruitment. J Innate Immunol. 2014;6.

  23. Schipf A, Heilmann A, Boue L, Mossmann H, Brocker T, Rocken M. Th2 cells shape the differentiation of development T cell responses during interactions with dendritic cells in vivo. Eur J Immunol. 2003;33:1697–706.

    Article  PubMed  CAS  Google Scholar 

  24. Na H, Cho M, Chung Y. Regulation of Th2 cell immunity by dendritic cells. Immune Netw. 2016;16:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McLeod JJA, Baker BN, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine. 2015;75:57–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kambayashi TLTM. Aytpical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;11:719–30.

    Article  CAS  Google Scholar 

  27. Kallinich T, Beier KC, Wahn U, Stock P, Hamelmann E. T-cell co-stimulatory molecules: their role in allergic immune reactions. Eur Respir J. 2007;29:1246–55.

    Article  PubMed  CAS  Google Scholar 

  28. Lotfi-Emran S, Ward B, Le QT, Pzez AL, Manjili MH, Woodfolk JA, Schwartz LB. Human mast cells present antigen to autologous CD4+ T cells. J Allergy Clin Immunol. 2017; in press.

  29. •• Skokos D, Panse SL, Villa I, Rouseelle JC, Peronet R, David B, et al. Mast cell-dependent B and T lymphocyte activation is mediated by secretion of immunologically active exosomes. J Immunol. 2001;166:868–76. This work demonstrates the ability for mast cells to induce antigen-specific recall responses of T cells, and it is the first to report that mast cells can use their secretory granuels for antigen processing and presentation.

    Article  PubMed  CAS  Google Scholar 

  30. •• Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J Allergy Clin Immunol. 2004;114:155–212. This was the first study to show the potential for mast cell derived exosomes to regulate the function of other immune cells.

    Article  PubMed  Google Scholar 

  31. merluzzi S, Betto E, Ceccaroni AA, Magris R, Giunta M, Mion F. Mast cells, basophils and B cell connection network. Mol Immunol. 2015;63:94–103.

    Article  PubMed  CAS  Google Scholar 

  32. Palm AE, Garcia-Faroldi G, Lundber M, Pejler G, Kleinau S. Activated mast cells promote differentiation of B cells into effector cells. Sci Rep. 2016;6.

  33. Merluzzi S, Frossi B, Gri G, Parusso S, Tripodo C, Pucillo C. Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood. 2010;115:2810–7.

    Article  PubMed  CAS  Google Scholar 

  34. Hong GU, Park BS, Park JW, Kim SY, RO JY. IgE production in CD40/CD40L cross-talk of B and mast cells and mediator release vis TGase 2 in mouse allergic asthma. Cell Signal. 2013;25:1514–25.

    Article  PubMed  CAS  Google Scholar 

  35. Kozma GT, Losonczy G, Keszei M, Komlosi Z, Buzas E, Pallinger E, et al. Histamine deficiency in gene-targeted mice strongly reduces antigen-induced airway hyper-responsiveness, eosinophilia and allergen-specific IgE. Int Immunol. 2003;15:963–73.

    Article  PubMed  CAS  Google Scholar 

  36. Sadek B, Stark H. Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology. 2016;106:56–73.

    Article  PubMed  CAS  Google Scholar 

  37. Jutel M, Watanabe T, Klunker S, Akdis M, Thoment OAR, Maloepszy J, Zak-Nejmark T, Koga R, Kobayashi T, Blaser K Akdis CA. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. 2001;413.

  38. • Swartzendruber JA, Byrne AJ, Bryce PJ. Histamine is required for IL-4-driven eosinophilic allergic responses. J Immunol. 2012;188:536–40. This study demonstrates an important link between histamine and IL-4 for eosinophil recruitment and IgE production.

    Article  PubMed  CAS  Google Scholar 

  39. Kimata H, Fujimoto M. Histamine inhibits immunoglobulin production via histamine H2 receptors without affecting cell growth in human B cells. Clin Immunol Immunopathol. 1994;73:96–102.

    Article  PubMed  Google Scholar 

  40. De Silva NS, Klein U. Dynamics of B cells in germinal centres. 2015;3:137–148.

  41. Ma L, Xue HB, Guan XH, Shu CM, Zhang JH, Yu J. Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. Clin Exp Immunol. 2014;175:25–31.

    Article  PubMed  CAS  Google Scholar 

  42. Jia L, Wang Y, Li J, Li S, Zhang Y, Shen J, et al. Detection of IL-9 producing T cells in PBMCs of allergic asthmatic patients. BMC Immunol. 2017;18:38.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Forbes EE, Groshcwitz K, Abonia JP, Brant EB, Cohen E, Blanchrd C, et al. IL-9 and mast cell-mediated intestinal permeability predisposes to oral antigen. J Exp Med. 2008;205:897–913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang Y, Shi J, Yan J, Xiao Z, Hou X, Lu P, et al. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat Immunol. 2017;18:921–30.

    Article  PubMed  CAS  Google Scholar 

  45. •• Wambre E, Bajzik W, DeLong JH, O’Brien K, Nguyen Q-A, Speake C, Gersuk VH, DeBerg HA, Whalen E, Ni C, Farrington M, Jeong D, Robinson D, Linsley PS, Vickery BP, Kwok WW. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med 2017;9. This paper was the first to characterize a subset of memory Th2 cells specifically elevated in atopic patients, termed Th2a cells. These cells express CRTH2, CD49d, and CD161 and are distinct from conventional Th2 cells.

  46. Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N, Zhou B, et al. TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol. 2015;136:433–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Potaczek DP, Nastalek M, Wojas-Pelc A, Undas A. The relationship between total serum IgE levels and atopic sensitization in subjects with or without atopic dermatitis. Allergol Int. 2014;63:485–6.

    Article  PubMed  Google Scholar 

  48. Davila I, Valero A, Entrenas LM, Valveny N, Herraez L. SIGE study group: relationship between serum total IgE and disease severity in patients with allergic asthma in Spain. J Investig Allergol Clin Immunol. 2015;25:120–7.

    PubMed  CAS  Google Scholar 

  49. Flinn A, Hourihane JO. Allergic reaction to peanuts: can we predict reaction severity in the wild? Curr Allergy Asthma Rep. 2013;13:645–50.

    Article  PubMed  CAS  Google Scholar 

  50. Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135:299–310.

    Article  PubMed  Google Scholar 

  51. • Kawakami T, Blank U. From IgE to omalizumab. J Immunol. 2016;197:4187–92. A nice reivew of the history of IgE, IgE receptor signaling, and the clinical/biological outcomes of therapies targeting IgE.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. • Cheng LE, Hartmann K, Roers A, Krummel MF, Locksley RM. Perivascular mast cells dynamically probe cutaneous blood vessels to capture immunoglobulin E. Immunity. 2013;38:166–75. This paper demonstrates that perivascular mast cells obtain IgE by sampling across vessel walls.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Balzar S, Strand M, Rhodes D, Wenzel SE. IgE expression pattern in lung: relation to systemic IgE and asthma phenotypes. J Allergy Clin Immunol. 2007;119:855–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Baba S, Kondo K, Toma-Hirano M, Kanaya K, Suzukawa K, Ushio M, et al. Local increase in IgE and class switch recombination to IgE in nasal polyps in chronic rhnicosinusitis. Clin Exp Allergy. 2014;44:701–12.

    Article  PubMed  CAS  Google Scholar 

  55. Takhar P, Corrigan CJ, Smurthwaite L, O’Connor BJ, Durham SR, Lee TH, et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol. 2007;119:213–8.

    Article  PubMed  CAS  Google Scholar 

  56. Coker HA, Fear DJ, Banfield GK, Durham SR, Gould HJ. Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis. J Immunol. 2005;174:5024–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Jacqueline Schaffer for her artistic work included in this review.

Funding

NIH Grant: R01 AI076456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Hulse.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velez, T.E., Bryce, P.J. & Hulse, K.E. Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation. Curr Allergy Asthma Rep 18, 30 (2018). https://doi.org/10.1007/s11882-018-0786-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-018-0786-6

Keywords

Navigation