Skip to main content

Advertisement

Log in

Epigenetics and Development of Food Allergy (FA) in Early Childhood

  • FOOD ALLERGY (D ATKINS, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

This review aims to highlight the latest advance on epigenetics in the development of food allergy (FA) and to offer future perspectives. FA, a condition caused by an immunoglobulin (Ig) E-mediated hypersensitivity reaction to food, has emerged as a major clinical and public health problem worldwide in light of its increasing prevalence, potential fatality, and significant medical and economic impact. Current evidence supports that epigenetic mechanisms are involved in immune regulation and that the epigenome may represent a key “missing piece” of the etiological puzzle for FA. There are a growing number of population-based epigenetic studies on allergy-related phenotypes, mostly focused on DNA methylation. Previous studies mostly applied candidate-gene approaches and have demonstrated that epigenetic marks are associated with multiple allergic diseases and/or with early-life exposures relevant to allergy development (such as early-life smoking exposure, air pollution, farming environment, and dietary fat). Rapid technological advancements have made unbiased genome-wide DNA methylation studies highly feasible, although there are substantial challenge in study design, data analyses, and interpretation of findings. In conclusion, epigenetics represents both an important knowledge gap and a promising research area for FA. Due to the early onset of FA, epigenetic studies of FA in prospective birth cohorts have the potential to better understand gene-environment interactions and underlying biological mechanisms in FA during critical developmental windows (preconception, in utero, and early childhood) and may lead to new paradigms in the diagnosis, prevention, and management of FA and provide novel targets for future drug discovery and therapies for FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124:1549–55.

    Article  PubMed  Google Scholar 

  2. Sicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014;133:291 e5–307 e5.

    Google Scholar 

  3. Kotz D, Simpson CR, Sheikh A. Incidence, prevalence, and trends of general practitioner-recorded diagnosis of peanut allergy in England, 2001 to 2005. J Allergy Clin Immunol. 2011;127:623 e1–30 e1.

    Article  Google Scholar 

  4. Rinaldi M, Harnack L, Oberg C, Schreiner P, St Sauver J, Travis LL. Peanut allergy diagnoses among children residing in Olmsted County, Minnesota. J Allergy Clin Immunol. 2012;130:945–50.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447:433–40.

    Article  CAS  PubMed  Google Scholar 

  6. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr. 2007;27:363–88.

    Article  CAS  PubMed  Google Scholar 

  7. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  CAS  PubMed  Google Scholar 

  8. Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet. 2013;14:585–94.

    Article  CAS  PubMed  Google Scholar 

  9. Hong X, Wang X. Early life precursors, epigenetics, and the development of food allergy. Semin Immunopathol. 2012;34:655–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Naumova AK, Al Tuwaijri A, Morin A, Vaillancourt VT, Madore AM, Berlivet S, et al. Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. Hum Genet. 2013;132:811–22.

    Article  CAS  PubMed  Google Scholar 

  11. Yang IV, Schwartz DA. Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol. 2012;130:1243–55. Excellent review on epigenetics of asthma.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Devries A, Vercelli D. Epigenetics of human asthma and allergy: promises to keep. Asian Pac J Allergy Immunol. 2013;31:183–9.

    PubMed  Google Scholar 

  13. Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol. 2010;126:845 e10–52 e10.

    Article  Google Scholar 

  14. Martino D, Joo JE, Sexton-Oates A, Dang T, Allen K, Saffery R, et al. Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics. 2014;9. The first genome-wide association study of food allergy which strengthens a critical role of DNA methylation in the development of food allergy.

  15. Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014;133:500 e11–10 e11. Important study investigating the role of DNA methylation in predicting clinical immune tolerance during peanut oral immunotherapy.

    Article  Google Scholar 

  16. Isidoro-Garcia M, Sanz C, Garcia-Solaesa V, Pascual M, Pescador DB, Lorente F, et al. PTGDR gene in asthma: a functional, genetic, and epigenetic study. Allergy. 2011;66:1553–62.

    Article  CAS  PubMed  Google Scholar 

  17. Gaffin JM, Raby BA, Petty CR, Hoffman EB, Baccarelli AA, Gold DR, et al. Beta-2 adrenergic receptor gene methylation is associated with decreased asthma severity in inner-city schoolchildren: asthma and rhinitis. Clin Exp Allergy. 2014;44:681–9.

    Article  CAS  PubMed  Google Scholar 

  18. Yang PJ, Li RN, Huang CC, Wang TH, Ko YC, Huang MS, et al. The methylation patterns of a disintegrin and metalloproteinase 33 gene (ADAM33) in adult asthma. Int Arch Allergy Immunol. 2013;161:74–80.

    Article  CAS  PubMed  Google Scholar 

  19. Curtin JA, Simpson A, Belgrave D, Semic-Jusufagic A, Custovic A, Martinez FD. Methylation of IL-2 promoter at birth alters the risk of asthma exacerbations during childhood. Clin Exp Allergy. 2013;43:304–11.

    Article  CAS  PubMed  Google Scholar 

  20. Kim YJ, Park SW, Kim TH, Park JS, Cheong HS, Shin HD, et al. Genome-wide methylation profiling of the bronchial mucosa of asthmatics: relationship to atopy. BMC Med Genet. 2013;14:39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Brunst KJ, Leung YK, Ryan PH, Khurana Hershey GK, Levin L, Ji H, et al. Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol. 2013;131:592 e1-3–4 e1-3.

    Article  Google Scholar 

  22. Morales E, Bustamante M, Vilahur N, Escaramis G, Montfort M, de Cid R, et al. DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood. Am J Respir Crit Care Med. 2012;185:937–43.

    Article  CAS  PubMed  Google Scholar 

  23. Fu A, Leaderer BP, Gent JF, Leaderer D, Zhu Y. An environmental epigenetic study of ADRB2 5’-UTR methylation and childhood asthma severity. Clin Exp Allergy. 2012;42:1575–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Runyon RS, Cachola LM, Rajeshuni N, Hunter T, Garcia M, Ahn R, et al. Asthma discordance in twins is linked to epigenetic modifications of T cells. PLoS One. 2012;7:e48796.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Stefanowicz D, Hackett TL, Garmaroudi FS, Gunther OP, Neumann S, Sutanto EN, et al. DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children. PLoS One. 2012;7:e44213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Reinius LE, Gref A, Saaf A, Acevedo N, Joerink M, Kupczyk M, et al. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors. PLoS One. 2013;8:e53877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sordillo JE, Lange NE, Tarantini L, Bollati V, Zanobetti A, Sparrow D, et al. Allergen sensitization is associated with increased DNA methylation in older men. Int Arch Allergy Immunol. 2013;161:37–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhang H, Tong X, Holloway JW, Rezwan FI, Lockett GA, Patil V, et al. The interplay of DNA methylation over time with Th2 pathway genetic variants on asthma risk and temporal asthma transition. Clin Epigenetics. 2014;6:8.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Han J, Park SG, Bae JB, Choi J, Lyu JM, Park SH, et al. The characteristics of genome-wide DNA methylation in naive CD4+ T cells of patients with psoriasis or atopic dermatitis. Biochem Biophys Res Commun. 2012;422:157–63.

    Article  CAS  PubMed  Google Scholar 

  30. Wang IJ, Chen SL, Lu TP, Chuang EY, Chen PC. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013;43:535–43.

    Article  CAS  PubMed  Google Scholar 

  31. Ziyab AH, Karmaus W, Holloway JW, Zhang H, Ewart S, Arshad SH. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol. 2013;27:e420–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rodriguez E, Baurecht H, Wahn AF, Kretschmer A, Hotze M, Zeilinger S, et al. An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Investig Dermatol. 2014;134(7):1873–83. Interesting finding demonstrating tissue-specific pattern of DNA methylation associated with eczema.

  33. Liang Y, Wang P, Zhao M, Liang G, Yin H, Zhang G, et al. Demethylation of the FCER1G promoter leads to FcepsilonRI overexpression on monocytes of patients with atopic dermatitis. Allergy. 2012;67:424–30.

    Article  CAS  PubMed  Google Scholar 

  34. Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 2014;39:48–53.

    Article  CAS  PubMed  Google Scholar 

  35. Nestor CE, Barrenas F, Wang H, Lentini A, Zhang H, Bruhn S, et al. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet. 2014;10:e1004059. The first genome-wide DNA methylation study on allergic rhinitis.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Shenker N, Flanagan JM. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br J Cancer. 2012;106:248–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13:R43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.

    Article  CAS  PubMed  Google Scholar 

  40. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479:74–9.

    Article  CAS  PubMed  Google Scholar 

  42. Moarefi AH, Chedin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol. 2011;409:758–72.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidl C, Klug M, Boeld TJ, Andreesen R, Hoffmann P, Edinger M, et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 2009;19:1165–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Brand S, Kesper DA, Teich R, Kilic-Niebergall E, Pinkenburg O, Bothur E, et al. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol. 2012;129:1602 e6–10 e6.

    Article  Google Scholar 

  45. Swamy RS, Reshamwala N, Hunter T, Vissamsetti S, Santos CB, Baroody FM, et al. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol. 2012;130:215 e7–24 e7.

    Article  Google Scholar 

  46. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    Article  CAS  PubMed  Google Scholar 

  47. Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect. 2012;120:296–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, et al. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene. 2012;494:36–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kohli A, Garcia MA, Miller RL, Maher C, Humblet O, Hammond SK, et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increasedx CpG methylation and decreased expression of IFN-gamma in T effector cells and Foxp3 in T regulatory cells in children. Clin Epigenetics. 2012;4:17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31. The first large genome-wide association study for materal smoking expsoure during pregnancy.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One. 2013;8:e63812.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, et al. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet. 2013;22:843–51.

    Article  CAS  PubMed  Google Scholar 

  53. Besingi W, Johansson A. Smoke-related DNA methylation changes in the etiology of human disease. Hum Mol Genet. 2014;23:2290–7. The genome-wide DNA associatiosn study of cigarette smoking identified that smoke-related DNA methylation changes are enriched in genes with biological functions associated with the immune system.

    Article  CAS  PubMed  Google Scholar 

  54. Depner M, Ege MJ, Genuneit J, Pekkanen J, Roponen M, Hirvonen MR, et al. Atopic sensitization in the first year of life. J Allergy Clin Immunol. 2013;131:781–8.

    Article  PubMed  Google Scholar 

  55. Slaats GG, Reinius LE, Alm J, Kere J, Scheynius A, Joerink M. DNA methylation levels within the CD14 promoter region are lower in placentas of mothers living on a farm. Allergy. 2012;67:895–903.

    Article  CAS  PubMed  Google Scholar 

  56. Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, et al. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy. 2013;68:355–64.

    Article  CAS  PubMed  Google Scholar 

  57. Gruzieva O, Bellander T, Eneroth K, Kull I, Melen E, Nordling E, et al. Traffic-related air pollution and development of allergic sensitization in children during the first 8 years of life. J Allergy Clin Immunol. 2012;129:240–6.

    Article  CAS  PubMed  Google Scholar 

  58. Carlsten C, Melen E. Air pollution, genetics, and allergy: an update. Curr Opin Allergy Clin Immunol. 2012;12:455–60.

    Article  CAS  PubMed  Google Scholar 

  59. Janssen BG, Godderis L, Pieters N, Poels K, Kici Ski M, Cuypers A, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol. 2013;10:22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Salam MT, Byun HM, Lurmann F, Breton CV, Wang X, Eckel SP, et al. Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J Allergy Clin Immunol. 2012;129:232 e1-7–9 e1-7.

    Article  Google Scholar 

  61. Sofer T, Baccarelli A, Cantone L, Coull B, Maity A, Lin X, et al. Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics. 2013;5:147–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol. 2012;129:1187–97.

    Article  PubMed  Google Scholar 

  63. Hermsdorff HH, Mansego ML, Campion J, Milagro FI, Zulet MA, Martinez JA. TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNFalpha, truncal fat and n-6 PUFA intake in young women. Cytokine. 2013;64:265–71.

    Article  CAS  PubMed  Google Scholar 

  64. Lee HS, Barraza-Villarreal A, Hernandez-Vargas H, Sly PD, Biessy C, Ramakrishnan U, et al. Modulation of DNA methylation states and infant immune system by dietary supplementation with omega-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr. 2013;98:480–7. An important study exploring the potential role of DNA methylation in mediating the beneficial effect of omega-3 PUFA against inflammatary disorders.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Aslibekyan S, Wiener HW, Havel PJ, Stanhope KL, O’Brien DM, Hopkins SE, et al. DNA methylation patterns are associated with n-3 fatty acid intake in Yup’ik people. J Nutr. 2014;144:425–30.

    Article  CAS  PubMed  Google Scholar 

  66. Teh AL, Pan H, Chen L, Ong ML, Dogra S, Wong J, et al. The effect of genotype and in utero environment on inter-individual variation in neonate DNA methylomes. Genome Res. 2014; 24(7):1064–74.

  67. Schieck M, Sharma V, Michel S, Toncheva AA, Worth L, Potaczek DP, et al. A polymorphism in the T 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy. 2014.

  68. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31:142–7. The study provides a framework on investigating the causal relationship betwene genes, methylation and disease pathogenesis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tsai HJ, Kumar R, Pongracic J, Liu X, Story R, Yu Y, et al. Familial aggregation of food allergy and sensitization to food allergens: a family-based study. Clin Exp Allergy. 2009;39:101–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Arshad SH, Karmaus W, Raza A, Kurukulaaratchy RJ, Matthews SM, Holloway JW, et al. The effect of parental allergy on childhood allergic diseases depends on the sex of the child. J Allergy Clin Immunol. 2012;130:427 e6–34 e6.

    Article  Google Scholar 

  71. Dold S, Wjst M, von Mutius E, Reitmeir P, Stiepel E. Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch Dis Child. 1992;67:1018–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Bisgaard H, Halkjaer LB, Hinge R, Giwercman C, Palmer C, Silveira L, et al. Risk analysis of early childhood eczema. J Allergy Clin Immunol. 2009;123:1355 e5–60 e5.

    Google Scholar 

  73. Liu CA, Wang CL, Chuang H, Ou CY, Hsu TY, Yang KD. Prenatal prediction of infant atopy by maternal but not paternal total IgE levels. J Allergy Clin Immunol. 2003;112:899–904.

    Article  CAS  PubMed  Google Scholar 

  74. Fedulov AV, Kobzik L. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am J Respir Cell Mol Biol. 2011;44:285–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462:868–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Gunawardhana LP, Baines KJ, Mattes J, Murphy VE, Simpson JL, Gibson PG. Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatr Pulmonol. 2013.

  77. Gervin K, Vigeland MD, Mattingsdal M, Hammero M, Nygard H, Olsen AO, et al. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet. 2012;8:e1002454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 2013;9:e1003678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7:e41361.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Fraser HB, Lam LL, Neumann SM, Kobor MS. Population-specificity of human DNA methylation. Genome Biol. 2012;13:R8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Food Allergy Research and Education (FARE) and grants from the National Institute of Allergy and Infectious Diseases (NIAID, PI: Xiaobin Wang, U01AI090727, R56AI080627, and R21AI088609).

Compliance with Ethics Guidelines

Conflict of Interest

Xiumei Hong and Xiaobin Wang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Wang.

Additional information

This article is part of the Topical Collection on Food Allergy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Wang, X. Epigenetics and Development of Food Allergy (FA) in Early Childhood. Curr Allergy Asthma Rep 14, 460 (2014). https://doi.org/10.1007/s11882-014-0460-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0460-6

Keywords

Navigation