Skip to main content

Advertisement

Log in

Early life precursors, epigenetics, and the development of food allergy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Food allergy (FA), a major clinical and public health concern worldwide, is caused by a complex interplay of environmental exposures, genetic variants, gene–environment interactions, and epigenetic alterations. This review summarizes recent advances surrounding these key factors, with a particular focus on the potential role of epigenetics in the development of FA. Epidemiologic studies have reported a number of nongenetic factors that may influence the risk of FA, such as timing of food introduction and feeding pattern, diet/nutrition, exposure to environmental tobacco smoking, prematurity and low birth weight, microbial exposure, and race/ethnicity. Current studies on the genetics of FA are mainly conducted using candidate gene approaches, which have linked more than 10 genes to the genetic susceptibility of FA. Studies on gene–environment interactions of FA are very limited. Epigenetic alteration has been proposed as one of the mechanisms to mediate the influence of early life environmental exposures and gene–environment interactions on the development of diseases later in life. The role of epigenetics in the regulation of the immune system and the epigenetic effects of some FA-associated environmental exposures are discussed in this review. There is a particular lack of large-scale prospective birth cohort studies that simultaneously assess the interrelationships of early life exposures, genetic susceptibility, epigenomic alterations, and the development of FA. The identification of these key factors and their independent and joint contributions to FA will allow us to gain important insight into the biological mechanisms by which environmental exposures and genetic susceptibility affect the risk of FA and will provide essential information to develop more effective new paradigms in the diagnosis, prevention, and management of FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACSL:

Actyl-CoA synthetase long-chain family, member 3

AIMs:

Ancestry informative markers

BBC:

Boston Birth Cohort

CTLA4:

Cytotoxic T lymphocyte-associated protein 4

CYP24A1:

Cytochrome P450, family 24, subfamily A, polypeptide 1

DCs:

Dendritic cells

DNMT:

DNA methyltransferase

ETS:

Environmental tobacco smoke

FA:

Food allergy

FCER1G:

Fc fragment of IgE, high affinity I, receptor for gamma polypeptide

FLG:

Filaggrin

FOXP3:

Forkhead box P3

FS:

Food sensitization

GSTP1:

Glutathione S-transferase pi 1

GWA:

Genome-wide association

HDACs:

Histone deacetylase

IFNG:

Interferon, gamma

IgE:

Immunoglobulin E

IL:

Interleukin

IL12RB1:

IL12 receptor, beta 1

IL4RA:

IL4 receptor alpha

LBW:

Low birth weight

MS4A2:

Membrane-spanning 4-domains, subfamily A, member 2

NHANES:

National Health and Nutrition Examination Survey

NLRP3:

NLR family, pyrin domain containing 3

PGE2:

Prostaglandin E2

PTPRO:

Protein tyrosine phosphatase receptor type O

LC-PUFAs:

Long-chain polyunsaturated fatty acids

SPINK5:

Serine peptidase inhibitor, Kazal type 5

STAT6:

Signal transducer and activator of transcription 6

TNFα:

Tumor necrosis factor, alpha

T reg:

T regulatory

TSLP:

Thymic stromal lymphopoietin

TLR:

Toll-like receptor

VDD:

Vitamin D deficiency

References

  1. Boyce JA, Assa'ad A, Burks AW et al (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126(6 Suppl):S1–S58

    PubMed  Google Scholar 

  2. Sampson HA (2004) Update on food allergy. J Allergy Clin Immunol 113(5):805–819, quiz 820

    PubMed  CAS  Google Scholar 

  3. Gupta R, Sheikh A, Strachan DP et al (2007) Time trends in allergic disorders in the UK. Thorax 62(1):91–96

    PubMed  CAS  Google Scholar 

  4. Chafen JJ, Newberry SJ, Riedl MA et al (2010) Diagnosing and managing common food allergies: a systematic review. JAMA 303(18):1848–1856

    PubMed  Google Scholar 

  5. Primeau MN, Kagan R, Joseph L et al (2000) The psychological burden of peanut allergy as perceived by adults with peanut allergy and the parents of peanut-allergic children. Clin Exp Allergy 30(8):1135–1143

    PubMed  CAS  Google Scholar 

  6. Sicherer SH, Noone SA, Munoz-Furlong A (2001) The impact of childhood food allergy on quality of life. Ann Allergy Asthma Immunol 87(6):461–464

    PubMed  CAS  Google Scholar 

  7. Avery NJ, King RM, Knight S et al (2003) Assessment of quality of life in children with peanut allergy. Pediatr Allergy Immunol 14(5):378–382

    PubMed  Google Scholar 

  8. Cohen BL, Noone S, Munoz-Furlong A et al (2004) Development of a questionnaire to measure quality of life in families with a child with food allergy. J Allergy Clin Immunol 114(5):1159–1163

    PubMed  Google Scholar 

  9. Sicherer SH (2011) Epidemiology of food allergy. J Allergy Clin Immunol 127(3):594–602

    PubMed  Google Scholar 

  10. Ninan TK, Russell G (1992) Respiratory symptoms and atopy in Aberdeen schoolchildren: evidence from two surveys 25 years apart. BMJ 304(6831):873–875

    PubMed  CAS  Google Scholar 

  11. Peat JK, van den Berg RH, Green WF et al (1994) Changing prevalence of asthma in Australian children. BMJ 308(6944):1591–1596

    PubMed  CAS  Google Scholar 

  12. Holt PG, Rowe J, Kusel M et al (2010) Toward improved prediction of risk for atopy and asthma among preschoolers: a prospective cohort study. J Allergy Clin Immunol 125(3):653–659, 659 e651-659 e657

    PubMed  Google Scholar 

  13. Ege MJ, Bieli C, Frei R et al (2006) Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 117(4):817–823

    PubMed  Google Scholar 

  14. Furuhjelm C, Warstedt K, Larsson J et al (2009) Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy. Acta Paediatr 98(9):1461–1467

    PubMed  Google Scholar 

  15. Kulig M, Luck W, Lau S et al (1999) Effect of pre- and postnatal tobacco smoke exposure on specific sensitization to food and inhalant allergens during the first 3 years of life. multicenter allergy study group, Germany. Allergy 54(3):220–228

    PubMed  CAS  Google Scholar 

  16. Nwaru BI, Ahonen S, Kaila M et al (2010) Maternal diet during pregnancy and allergic sensitization in the offspring by 5 years of age: a prospective cohort study. Pediatr Allergy Immunol 21(1 Pt 1):29–37

    PubMed  Google Scholar 

  17. Neaville WA, Tisler C, Bhattacharya A et al (2003) Developmental cytokine response profiles and the clinical and immunologic expression of atopy during the first year of life. J Allergy Clin Immunol 112(4):740–746

    PubMed  CAS  Google Scholar 

  18. Lack G (2008) Epidemiologic risks for food allergy. J Allergy Clin Immunol 121(6):1331–1336

    PubMed  CAS  Google Scholar 

  19. Saarinen UM, Kajosaari M (1995) Breastfeeding as prophylaxis against atopic disease: prospective follow-up study until 17 years old. Lancet 346(8982):1065–1069

    PubMed  CAS  Google Scholar 

  20. Oddy WH, Holt PG, Sly PD et al (1999) Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study. BMJ 319(7213):815–819

    PubMed  CAS  Google Scholar 

  21. Kramer MS, Chalmers B, Hodnett ED et al (2001) Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus. JAMA 285(4):413–420

    PubMed  CAS  Google Scholar 

  22. Kramer MS, Matush L, Vanilovich I et al (2007) Effect of prolonged and exclusive breast feeding on risk of allergy and asthma: cluster randomised trial. BMJ 335(7624):815

    PubMed  Google Scholar 

  23. Kucukosmanoglu E, Yazi D, Yesil O et al (2008) Prevalence of egg sensitization in Turkish infants based on skin prick test. Allergol Immunopathol (Madr) 36(3):141–144

    CAS  Google Scholar 

  24. Venter C, Pereira B, Voigt K et al (2009) Factors associated with maternal dietary intake, feeding and weaning practices, and the development of food hypersensitivity in the infant. Pediatr Allergy Immunol 20(4):320–327

    PubMed  Google Scholar 

  25. Nwaru BI, Erkkola M, Ahonen S et al (2010) Age at the introduction of solid foods during the first year and allergic sensitization at age 5 years. Pediatrics 125(1):50–59

    PubMed  Google Scholar 

  26. Lack G, Fox D, Northstone K et al (2003) Factors associated with the development of peanut allergy in childhood. N Engl J Med 348(11):977–985

    PubMed  Google Scholar 

  27. Mihrshahi S, Ampon R, Webb K et al (2007) The association between infant feeding practices and subsequent atopy among children with a family history of asthma. Clin Exp Allergy 37(5):671–679

    PubMed  CAS  Google Scholar 

  28. Linneberg A, Simonsen JB, Petersen J et al (2006) Differential effects of risk factors on infant wheeze and atopic dermatitis emphasize a different etiology. J Allergy Clin Immunol 117(1):184–189

    PubMed  Google Scholar 

  29. Sears MR, Greene JM, Willan AR et al (2002) Long-term relation between breastfeeding and development of atopy and asthma in children and young adults: a longitudinal study. Lancet 360(9337):901–907

    PubMed  Google Scholar 

  30. Host A, Halken S, Muraro A et al (2008) Dietary prevention of allergic diseases in infants and small children. Pediatr Allergy Immunol 19(1):1–4

    PubMed  Google Scholar 

  31. Greer FR, Sicherer SH, Burks AW (2008) Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics 121(1):183–191

    PubMed  Google Scholar 

  32. Koplin JJ, Osborne NJ, Wake M et al (2010) Can early introduction of egg prevent egg allergy in infants? A population-based study. J Allergy Clin Immunol 126(4):807–813

    PubMed  Google Scholar 

  33. Katz Y, Rajuan N, Goldberg MR et al (2010) Early exposure to cow's milk protein is protective against IgE-mediated cow's milk protein allergy. J Allergy Clin Immunol 126(1):77–82, e71

    PubMed  CAS  Google Scholar 

  34. Du Toit G, Katz Y, Sasieni P et al (2008) Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J Allergy Clin Immunol 122(5):984–991

    PubMed  Google Scholar 

  35. Poole JA, Barriga K, Leung DY et al (2006) Timing of initial exposure to cereal grains and the risk of wheat allergy. Pediatrics 117(6):2175–2182

    PubMed  Google Scholar 

  36. Matheson MC, Erbas B, Balasuriya A et al (2007) Breast-feeding and atopic disease: a cohort study from childhood to middle age. J Allergy Clin Immunol 120(5):1051–1057

    PubMed  Google Scholar 

  37. Mandhane PJ, Greene JM, Sears MR (2007) Interactions between breast-feeding, specific parental atopy, and sex on development of asthma and atopy. J Allergy Clin Immunol 119(6):1359–1366

    PubMed  Google Scholar 

  38. Pesonen M, Kallio MJ, Ranki A et al (2006) Prolonged exclusive breastfeeding is associated with increased atopic dermatitis: a prospective follow-up study of unselected healthy newborns from birth to age 20 years. Clin Exp Allergy 36(8):1011–1018

    PubMed  CAS  Google Scholar 

  39. Kumar R, Caruso DM, Arguelles L et al (2010) Early life eczema, food introduction, and risk of food allergy in children. Pediatr Allergy Immunol Pulmonol 23(3):175–182

    PubMed  Google Scholar 

  40. Joseph CL, Ownby DR, Havstad SL et al (2011) Early complementary feeding and risk of food sensitization in a birth cohort. J Allergy Clin Immunol 127(5):1203–1210, e1205

    PubMed  Google Scholar 

  41. Hong X, Wang G, Liu X et al (2011) Gene polymorphisms, breast-feeding, and development of food sensitization in early childhood. J Allergy Clin Immunol 128(2):374–381, e372

    PubMed  CAS  Google Scholar 

  42. Adams JS, Hewison M (2008) Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab 4(2):80–90

    PubMed  CAS  Google Scholar 

  43. Baeke F, Takiishi T, Korf H et al (2010) Vitamin D: modulator of the immune system. Curr Opin Pharmacol 10(4):482–496

    PubMed  CAS  Google Scholar 

  44. Vassallo MF, Camargo CA Jr (2010) Potential mechanisms for the hypothesized link between sunshine, vitamin D, and food allergy in children. J Allergy Clin Immunol 126(2):217–222

    PubMed  CAS  Google Scholar 

  45. Szeles L, Keresztes G, Torocsik D et al (2009) 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol 182(4):2074–2083

    PubMed  CAS  Google Scholar 

  46. Dimeloe S, Nanzer A, Ryanna K et al (2010) Regulatory T cells, inflammation and the allergic response—the role of glucocorticoids and vitamin D. J Steroid Biochem Mol Biol 120(2–3):86–95

    PubMed  CAS  Google Scholar 

  47. Unger WW, Laban S, Kleijwegt FS et al (2009) Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur J Immunol 39(11):3147–3159

    PubMed  CAS  Google Scholar 

  48. Heine G, Niesner U, Chang HD et al (2008) 1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. Eur J Immunol 38(8):2210–2218

    PubMed  CAS  Google Scholar 

  49. Vassallo MF, Banerji A, Rudders SA et al (2010) Season of birth and food allergy in children. Ann Allergy Asthma Immunol 104(4):307–313

    PubMed  Google Scholar 

  50. Vassallo MF, Banerji A, Rudders SA et al (2010) Season of birth and food-induced anaphylaxis in Boston. Allergy 65(11):1492–1493

    PubMed  CAS  Google Scholar 

  51. Camargo CA Jr, Clark S, Kaplan MS et al (2007) Regional differences in EpiPen prescriptions in the United States: the potential role of vitamin D. J Allergy Clin Immunol 120(1):131–136

    PubMed  Google Scholar 

  52. Mullins RJ, Clark S, Camargo CA Jr (2009) Regional variation in epinephrine autoinjector prescriptions in Australia: more evidence for the vitamin D-anaphylaxis hypothesis. Ann Allergy Asthma Immunol 103(6):488–495

    PubMed  Google Scholar 

  53. Mullins RJ, Clark S, Camargo CA Jr (2010) Regional variation in infant hypoallergenic formula prescriptions in Australia. Pediatr Allergy Immunol 21(2 Pt 2):e413–e420

    PubMed  Google Scholar 

  54. Wjst M, Dharmage S, Andre E et al (2005) Latitude, birth date, and allergy. PLoS Med 2(10):e294

    PubMed  Google Scholar 

  55. Rudders SA, Espinola JA, Camargo CA Jr (2010) North—south differences in US emergency department visits for acute allergic reactions. Ann Allergy Asthma Immunol 104(5):413–416

    PubMed  Google Scholar 

  56. Wjst M, Hypponen E (2007) Vitamin D serum levels and allergic rhinitis. Allergy 62(9):1085–1086

    PubMed  CAS  Google Scholar 

  57. Sharief S, Jariwala S, Kumar J et al (2011) Vitamin D levels and food and environmental allergies in the United States: results from the National Health and Nutrition Examination Survey 2005–2006. J Allergy Clin Immunol 127(5):1195–1202

    PubMed  CAS  Google Scholar 

  58. Gale CR, Robinson SM, Harvey NC et al (2008) Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr 62(1):68–77

    PubMed  CAS  Google Scholar 

  59. Wjst M (2008) Allergy risk of vitamin D supplements has been described in various settings. J Allergy Clin Immunol 12(4):1065–1066, author reply 1066

    Google Scholar 

  60. Wjst M, Dold S (1999) Genes, factor X, and allergens: what causes allergic diseases? Allergy 54(7):757–759

    PubMed  CAS  Google Scholar 

  61. Litonjua AA, Weiss ST (2007) Is vitamin D deficiency to blame for the asthma epidemic? J Allergy Clin Immunol 12(0):1031–1035

    Google Scholar 

  62. Kong J, Zhang Z, Musch MW et al (2008) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 294(1):G208–G216

    PubMed  CAS  Google Scholar 

  63. Liu X, Wang G, Hong X, et al. (2011) Gene–vitamin D interactions on food sensitization: a prospective birth cohort study. Allergy

  64. Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol 146(1):108–113

    PubMed  CAS  Google Scholar 

  65. Snijdewint FG, Kalinski P, Wierenga EA et al (1993) Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol 150(12):5321–5329

    PubMed  CAS  Google Scholar 

  66. Krauss-Etschmann S, Hartl D, Rzehak P et al (2008) Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-beta levels after fish oil supplementation of pregnant women. J Allergy Clin Immunol 12(2):464–470, e466

    Google Scholar 

  67. Kull I, Bergstrom A, Lilja G et al (2006) Fish consumption during the first year of life and development of allergic diseases during childhood. Allergy 61(8):1009–1015

    PubMed  CAS  Google Scholar 

  68. Manley BJ, Makrides M, Collins CT et al (2011) High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics 128(1):e71–e77

    PubMed  Google Scholar 

  69. Saarinen UM, Kajosaari M (1980) Does dietary elimination in infancy prevent or only postpone a food allergy? A study of fish and citrus allergy in 375 children. Lancet 1(8161):166–167

    PubMed  CAS  Google Scholar 

  70. Anandan C, Nurmatov U, Sheikh A (2009) Omega 3 and 6 oils for primary prevention of allergic disease: systematic review and meta-analysis. Allergy 64(6):840–848

    PubMed  CAS  Google Scholar 

  71. Li-Weber M, Giaisi M, Treiber MK et al (2002) Vitamin E inhibits IL-4 gene expression in peripheral blood T cells. Eur J Immunol 32(9):2401–2408

    PubMed  CAS  Google Scholar 

  72. McKeever TM, Lewis SA, Smit H et al (2004) Serum nutrient markers and skin prick testing using data from the third national health and nutrition examination survey. J Allergy Clin Immunol 114(6):1398–1402

    PubMed  CAS  Google Scholar 

  73. Patel S, Murray CS, Woodcock A et al (2009) Dietary antioxidant intake, allergic sensitization and allergic diseases in young children. Allergy 64(12):1766–1772

    PubMed  CAS  Google Scholar 

  74. Sato Y, Akiyama H, Suganuma H et al (2004) The feeding of beta-carotene down-regulates serum IgE levels and inhibits the type I allergic response in mice. Biol Pharm Bull 27(7):978–984

    PubMed  CAS  Google Scholar 

  75. Hoppu U, Rinne M, Salo-Vaananen P et al (2005) Vitamin C in breast milk may reduce the risk of atopy in the infant. Eur J Clin Nutr 59(1):123–128

    PubMed  CAS  Google Scholar 

  76. Marmsjo K, Rosenlund H, Kull I et al (2009) Use of multivitamin supplements in relation to allergic disease in 8-y-old children. Am J Clin Nutr 90(6):1693–1698

    PubMed  Google Scholar 

  77. Milner JD, Stein DM, McCarter R et al (2004) Early infant multivitamin supplementation is associated with increased risk for food allergy and asthma. Pediatrics 114(1):27–32

    PubMed  Google Scholar 

  78. Nurmatov U, Devereux G, Sheikh A (2011) Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol 127(3):724–733, e721-730

    PubMed  Google Scholar 

  79. Hollingsworth JW, Maruoka S, Boon K et al (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118(10):3462–3469

    PubMed  CAS  Google Scholar 

  80. Bekkers MB, Elstgeest LE, Scholtens S, et al. (2011) Maternal use of folic acid supplements during pregnancy and childhood respiratory health and atopy: the PIAMA birth cohort study. Eur Respir J

  81. Martinussen MP, Risnes KR, Jacobsen GW et al (2012) Folic acid supplementation in early pregnancy and asthma in children aged 6 years. Am J Obstet Gynecol 206(1):72, e71-77

    PubMed  Google Scholar 

  82. Binkley KE, Leaver C, Ray JG (2011) Antenatal risk factors for peanut allergy in children. Allergy Asthma Clin Immunol 7:17

    PubMed  CAS  Google Scholar 

  83. Lannero E, Wickman M, van Hage M et al (2008) Exposure to environmental tobacco smoke and sensitisation in children. Thorax 63(2):172–176

    PubMed  CAS  Google Scholar 

  84. Keil T, Lau S, Roll S et al (2009) Maternal smoking increases risk of allergic sensitization and wheezing only in children with allergic predisposition: longitudinal analysis from birth to 10 years. Allergy 64(3):445–451

    PubMed  CAS  Google Scholar 

  85. Raherison C, Penard-Morand C, Moreau D et al (2008) Smoking exposure and allergic sensitization in children according to maternal allergies. Ann Allergy Asthma Immunol 100(4):351–357

    PubMed  Google Scholar 

  86. Strachan DP, Cook DG (1998) Health effects of passive smoking. 5. Parental smoking and allergic sensitisation in children. Thorax 53(2):117–123

    PubMed  CAS  Google Scholar 

  87. Metsala J, Lundqvist A, Kaila M et al (2010) Maternal and perinatal characteristics and the risk of cow's milk allergy in infants up to 2 years of age: a case–control study nested in the Finnish population. Am J Epidemiol 171(12):1310–1316

    PubMed  Google Scholar 

  88. Weaver LT, Laker MF, Nelson R (1984) Intestinal permeability in the newborn. Arch Dis Child 59(3):236–241

    PubMed  CAS  Google Scholar 

  89. Roberton DM, Paganelli R, Dinwiddie R et al (1982) Milk antigen absorption in the preterm and term neonate. Arch Dis Child 57(5):369–372

    PubMed  CAS  Google Scholar 

  90. McNeish AS (1984) Enzymatic maturation of the gastrointestinal tract and its relevance to food allergy and intolerance in infancy. Ann Allergy 53(6 Pt 2):643–648

    PubMed  CAS  Google Scholar 

  91. Lucas A, McLaughlan P, Coombs RR (1984) Latent anaphylactic sensitisation of infants of low birth weight to cows' milk proteins. Br Med J (Clin Res Ed) 289(6454):1254–1256

    CAS  Google Scholar 

  92. Chandran U, Demissie K, Echeverria SE, et al. (2012) Food allergy among low birthweight children in a national survey. Matern Child Health J

  93. de Martino M, Donzelli GP, Galli L et al (1989) Food allergy in preterm infants fed human milk. Biol Neonate 56(6):301–305

    PubMed  Google Scholar 

  94. Liem JJ, Kozyrskyj AL, Huq SI et al (2007) The risk of developing food allergy in premature or low-birth-weight children. J Allergy Clin Immunol 119(5):1203–1209

    PubMed  Google Scholar 

  95. Kumar R, Yu Y, Story RE et al (2008) Prematurity, chorioamnionitis, and the development of recurrent wheezing: a prospective birth cohort study. J Allergy Clin Immunol 121(4):878–884, e876

    PubMed  Google Scholar 

  96. Hikino S, Nakayama H, Yamamoto J et al (2001) Food allergy and atopic dermatitis in low birthweight infants during early childhood. Acta Paediatr 90(8):850–855

    PubMed  CAS  Google Scholar 

  97. Wold AE (1998) The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal flora? Allergy 53(46 Suppl):20–25

    PubMed  CAS  Google Scholar 

  98. Noverr MC, Huffnagle GB (2005) The 'microflora hypothesis' of allergic diseases. Clin Exp Allergy 35(12):1511–1520

    PubMed  CAS  Google Scholar 

  99. Negele K, Heinrich J, Borte M et al (2004) Mode of delivery and development of atopic disease during the first 2 years of life. Pediatr Allergy Immunol 15(1):48–54

    PubMed  Google Scholar 

  100. Bager P, Wohlfahrt J, Westergaard T (2008) Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 38(4):634–642

    PubMed  CAS  Google Scholar 

  101. Sanchez-Valverde F, Gil F, Martinez D et al (2009) The impact of caesarean delivery and type of feeding on cow's milk allergy in infants and subsequent development of allergic march in childhood. Allergy 64(6):884–889

    PubMed  CAS  Google Scholar 

  102. Eggesbo M, Botten G, Stigum H et al (2003) Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol 112(2):420–426

    PubMed  Google Scholar 

  103. Dioun AF, Harris SK, Hibberd PL (2003) Is maternal age at delivery related to childhood food allergy? Pediatr Allergy Immunol 14(4):307–311

    PubMed  Google Scholar 

  104. Turner SW, Palmer LJ, Gibson NA et al (2005) The effect of age on the relationship between birth order and immunoglobulin E sensitization. Clin Exp Allergy 35(5):630–634

    PubMed  CAS  Google Scholar 

  105. Johnson CC, Ownby DR, Alford SH et al (2005) Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol 115(6):1218–1224

    PubMed  CAS  Google Scholar 

  106. Sandini U, Kukkonen AK, Poussa T et al (2011) Protective and risk factors for allergic diseases in high-risk children at the ages of two and five years. Int Arch Allergy Immunol 156(3):339–348

    PubMed  Google Scholar 

  107. Lewis MC, Inman CF, Patel D, et al. (2012) Direct experimental evidence that early-life farm environment influences regulation of immune responses. Pediatr Allergy Immunol

  108. Schaub B, Liu J, Hoppler S et al (2009) Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 123(4):774–782, e775

    PubMed  CAS  Google Scholar 

  109. Liu X, Liu L, Owens JA et al (2005) Sleep patterns and sleep problems among schoolchildren in the United States and China. Pediatrics 115(1 Suppl):241–249

    PubMed  Google Scholar 

  110. Ouyang F, Lu BS, Wang B et al (2009) Sleep patterns among rural Chinese twin adolescents. Sleep Med 10(4):479–489

    PubMed  Google Scholar 

  111. Hedley AA, Ogden CL, Johnson CL et al (2004) Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. Jama 291(23):2847–2850

    PubMed  CAS  Google Scholar 

  112. Sicherer SH, Munoz-Furlong A, Godbold JH et al (2010) US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol 125(6):1322–1326

    PubMed  CAS  Google Scholar 

  113. Rudders SA, Banerji A, Vassallo MF et al (2010) Trends in pediatric emergency department visits for food-induced anaphylaxis. J Allergy Clin Immunol 126(2):385–388

    PubMed  Google Scholar 

  114. Teramoto S, Yamamoto H, Yamaguchi Y et al (2005) Obstructive sleep apnea causes systemic inflammation and metabolic syndrome. Chest 127(3):1074–1075

    PubMed  Google Scholar 

  115. Vgontzas AN, Zoumakis E, Bixler EO et al (2004) Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89(5):2119–2126

    PubMed  CAS  Google Scholar 

  116. Bryant PA, Trinder J, Curtis N (2004) Sick and tired: does sleep have a vital role in the immune system? Nat Rev Immunol 4(6):457–467

    PubMed  CAS  Google Scholar 

  117. van Leeuwen WM, Lehto M, Karisola P et al (2009) Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One 4(2):e4589

    PubMed  Google Scholar 

  118. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949

    PubMed  CAS  Google Scholar 

  119. Kubota T, Fang J, Kushikata T et al (2000) Interleukin-13 and transforming growth factor-beta1 inhibit spontaneous sleep in rabbits. Am J Physiol Regul Integr Comp Physiol 279(3):R786–R792

    PubMed  CAS  Google Scholar 

  120. Kushikata T, Fang J, Wang Y et al (1998) Interleukin-4 inhibits spontaneous sleep in rabbits. Am J Physiol 275(4 Pt 2):R1185–R1191

    PubMed  CAS  Google Scholar 

  121. Zhang S, Liu X, Kim JS et al (2011) Association between short sleep duration and the risk of sensitization to food and aero allergens in rural Chinese adolescents. Clin Exp Allergy 41(4):547–555

    PubMed  CAS  Google Scholar 

  122. Untersmayr E, Jensen-Jarolim E (2008) The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol 121(6):1301–1308, quiz 1309-1310

    PubMed  Google Scholar 

  123. Scholl I, Ackermann U, Ozdemir C et al (2007) Anti-ulcer treatment during pregnancy induces food allergy in mouse mothers and a Th2-bias in their offspring. FASEB J 21(4):1264–1270

    PubMed  Google Scholar 

  124. Scholl I, Untersmayr E, Bakos N et al (2005) Antiulcer drugs promote oral sensitization and hypersensitivity to hazelnut allergens in BALB/c mice and humans. Am J Clin Nutr 81(1):154–160

    PubMed  Google Scholar 

  125. Untersmayr E, Scholl I, Swoboda I et al (2003) Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice. J Allergy Clin Immunol 112(3):616–623

    PubMed  CAS  Google Scholar 

  126. Pali-Scholl I, Herzog R, Wallmann J et al (2010) Antacids and dietary supplements with an influence on the gastric pH increase the risk for food sensitization. Clin Exp Allergy 40(7):1091–1098

    PubMed  CAS  Google Scholar 

  127. Untersmayr E, Bakos N, Scholl I et al (2005) Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients. FASEB J 19(6):656–658

    PubMed  CAS  Google Scholar 

  128. Sicherer SH, Wood RA, Stablein D et al (2010) Maternal consumption of peanut during pregnancy is associated with peanut sensitization in atopic infants. J Allergy Clin Immunol 126(6):1191–1197

    PubMed  CAS  Google Scholar 

  129. Liu AH, Jaramillo R, Sicherer SH et al (2010) National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol 126(4):798–806, e713

    PubMed  Google Scholar 

  130. Sicherer SH, Munoz-Furlong A, Sampson HA (2004) Prevalence of seafood allergy in the United States determined by a random telephone survey. J Allergy Clin Immunol 114(1):159–165

    PubMed  Google Scholar 

  131. Yaeger R, Avila-Bront A, Abdul K et al (2008) Comparing genetic ancestry and self-described race in African Americans born in the United States and in Africa. Cancer Epidemiol Biomarkers Prev 17(6):1329–1338

    PubMed  CAS  Google Scholar 

  132. Goldstein DB, Hirschhorn JN (2004) In genetic control of disease, does ‘race’ matter? Nat Genet 36(12):1243–1244

    PubMed  CAS  Google Scholar 

  133. Hoggart CJ, Parra EJ, Shriver MD et al (2003) Control of confounding of genetic associations in stratified populations. Am J Hum Genet 72(6):1492–1504

    PubMed  CAS  Google Scholar 

  134. Rosenberg NA, Li LM, Ward R et al (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73(6):1402–1422

    PubMed  CAS  Google Scholar 

  135. Tang H, Peng J, Wang P et al (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28(4):289–301

    PubMed  Google Scholar 

  136. Kumar R, Tsai HJ, Hong X et al (2011) Race, ancestry, and development of food-allergen sensitization in early childhood. Pediatrics 128(4):e821–e829

    PubMed  Google Scholar 

  137. Visness CM, London SJ, Daniels JL et al (2009) Association of obesity with IgE levels and allergy symptoms in children and adolescents: results from the national health and nutrition examination survey 2005-2006. J Allergy Clin Immunol 123(5):1163–1169, 1169 e1161-1164

    PubMed  CAS  Google Scholar 

  138. Bakos N, Scholl I, Szalai K et al (2006) Risk assessment in elderly for sensitization to food and respiratory allergens. Immunol Lett 107(1):15–21

    PubMed  CAS  Google Scholar 

  139. Gruzieva O, Bellander T, Eneroth K et al (2012) Traffic-related air pollution and development of allergic sensitization in children during the first 8 years of life. J Allergy Clin Immunol 129(1):240–246

    PubMed  CAS  Google Scholar 

  140. Kumar R, Ouyang F, Story RE et al (2009) Gestational diabetes, atopic dermatitis, and allergen sensitization in early childhood. J Allergy Clin Immunol 124(5):1031–1038, e1031-1034

    PubMed  CAS  Google Scholar 

  141. Keet CA, Wood RA, Matsui EC (2012) Personal and parental nativity as risk factors for food sensitization. J Allergy Clin Immunol 129(1):169–175, e161-165

    PubMed  Google Scholar 

  142. Hong X, Tsai HJ, Wang X (2009) Genetics of food allergy. Curr Opin Pediatr 21(6):770–776

    PubMed  Google Scholar 

  143. Howell WM, Turner SJ, Hourihane JO et al (1998) HLA class II DRB1, DQB1 and DPB1 genotypic associations with peanut allergy: evidence from a family-based and case–control study. Clin Exp Allergy 28(2):156–162

    PubMed  CAS  Google Scholar 

  144. Senechal H, Geny S, Desvaux FX et al (1999) Genetics and specific immune response in allergy to birch pollen and food: evidence of a strong, positive association between atopy and the HLA class II allele HLA-DR7. J Allergy Clin Immunol 104(2 Pt 1):395–401

    PubMed  CAS  Google Scholar 

  145. Woo JG, Assa'ad A, Heizer AB et al (2003) The −159 C→T polymorphism of CD14 is associated with nonatopic asthma and food allergy. J Allergy Clin Immunol 112(2):438–444

    PubMed  CAS  Google Scholar 

  146. Bottema RW, Kerkhof M, Reijmerink NE et al (2010) X-chromosome Forkhead Box P3 polymorphisms associate with atopy in girls in three Dutch birth cohorts. Allergy 65(7):865–874

    PubMed  CAS  Google Scholar 

  147. Torgerson TR, Linane A, Moes N et al (2007) Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 132(5):1705–1717

    PubMed  CAS  Google Scholar 

  148. Amoli MM, Hand S, Hajeer AH et al (2002) Polymorphism in the STAT6 gene encodes risk for nut allergy. Genes Immun 3(4):220–224

    PubMed  CAS  Google Scholar 

  149. Sharabrin OI (1968) Changes in the hamatopoietic system in swine with hog cholera. Veterinariia 45(7):38–41

    PubMed  CAS  Google Scholar 

  150. Alberto EJ, Shimojo N, Suzuki Y et al (2008) IL-10 gene polymorphism, but not TGF-beta1 gene polymorphisms, is associated with food allergy in a Japanese population. Pediatr Allergy Immunol 19(8):716–721

    Google Scholar 

  151. Liu X, Beaty TH, Deindl P et al (2004) Associations between specific serum IgE response and 6 variants within the genes IL4, IL13, and IL4RA in German children: the German Multicenter Atopy Study. J Allergy Clin Immunol 113(3):489–495

    PubMed  CAS  Google Scholar 

  152. Hitomi Y, Ebisawa M, Tomikawa M et al (2009) Associations of functional NLRP3 polymorphisms with susceptibility to food-induced anaphylaxis and aspirin-induced asthma. J Allergy Clin Immunol 124(4):779–785, e776

    PubMed  CAS  Google Scholar 

  153. Brown SJ, Asai Y, Cordell HJ et al (2011) Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127(3):661–667

    PubMed  CAS  Google Scholar 

  154. Ogbuanu IU, Karmaus WJ, Zhang H et al (2010) Birth order modifies the effect of IL13 gene polymorphisms on serum IgE at age 10 and skin prick test at ages 4, 10 and 18: a prospective birth cohort study. Allergy Asthma Clin Immunol 6(1):6

    PubMed  CAS  Google Scholar 

  155. Panasevich S, Lindgren C, Kere J et al (2010) Interaction between early maternal smoking and variants in TNF and GSTP1 in childhood wheezing. Clin Exp Allergy 40(3):458–467

    PubMed  CAS  Google Scholar 

  156. Li H, Romieu I, Sienra-Monge JJ et al (2006) Genetic polymorphisms in arginase I and II and childhood asthma and atopy. J Allergy Clin Immunol 117(1):119–126

    PubMed  CAS  Google Scholar 

  157. Melen E, Nyberg F, Lindgren CM et al (2008) Interactions between glutathione S-transferase P1, tumor necrosis factor, and traffic-related air pollution for development of childhood allergic disease. Environ Health Perspect 116(8):1077–1084

    PubMed  CAS  Google Scholar 

  158. Castro-Giner F, Kunzli N, Jacquemin B et al (2009) Traffic-related air pollution, oxidative stress genes, and asthma (ECHRS). Environ Health Perspect 117(12):1919–1924

    PubMed  CAS  Google Scholar 

  159. Custovic A, Rothers J, Stern D et al (2011) Effect of day care attendance on sensitization and atopic wheezing differs by Toll-like receptor 2 genotype in 2 population-based birth cohort studies. J Allergy Clin Immunol 127(2):390–397, e391-399

    PubMed  CAS  Google Scholar 

  160. Eder W, Klimecki W, Yu L et al (2005) Opposite effects of CD 14/-260 on serum IgE levels in children raised in different environments. J Allergy Clin Immunol 116(3):601–607

    PubMed  CAS  Google Scholar 

  161. Leynaert B, Guilloud-Bataille M, Soussan D et al (2006) Association between farm exposure and atopy, according to the CD14 C-159T polymorphism. J Allergy Clin Immunol 118(3):658–665

    PubMed  CAS  Google Scholar 

  162. Roduit C, Wohlgensinger J, Frei R et al (2011) Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J Allergy Clin Immunol 127(1):179–185, 185 e171

    PubMed  Google Scholar 

  163. Penders J, Thijs C, Mommers M et al (2010) Host–microbial interactions in childhood atopy: toll-like receptor 4 (TLR4), CD14, and fecal Escherichia coli. J Allergy Clin Immunol 125(1):231–236, e231-235

    PubMed  CAS  Google Scholar 

  164. Simpson A, John SL, Jury F et al (2006) Endotoxin exposure, CD14, and allergic disease: an interaction between genes and the environment. Am J Respir Crit Care Med 174(4):386–392

    PubMed  CAS  Google Scholar 

  165. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    PubMed  CAS  Google Scholar 

  166. Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    PubMed  CAS  Google Scholar 

  167. Rodriguez A, Griffiths-Jones S, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910

    PubMed  CAS  Google Scholar 

  168. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    PubMed  CAS  Google Scholar 

  169. Ollikainen M, Smith KR, Joo EJ, et al. (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet

  170. Wong CC, Caspi A, Williams B et al (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5(6)

  171. Gluckman PD, Hanson MA, Cooper C et al (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(1):61–73

    PubMed  CAS  Google Scholar 

  172. Hanson MA, Gluckman PD (2008) Developmental origins of health and disease: new insights. Basic Clin Pharmacol Toxicol 102(2):90–93

    PubMed  CAS  Google Scholar 

  173. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440

    PubMed  CAS  Google Scholar 

  174. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    PubMed  CAS  Google Scholar 

  175. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093

    PubMed  CAS  Google Scholar 

  176. Prescott SL, Macaubas C, Smallacombe T et al (1999) Development of allergen-specific T-cell memory in atopic and normal children. Lancet 353(9148):196–200

    PubMed  CAS  Google Scholar 

  177. Brand S, Kesper DA, Teich R, et al. (2012) DNA methylation of T(H)1/T(H)2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol

  178. White GP, Hollams EM, Yerkovich ST et al (2006) CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol 17(8):557–564

    PubMed  Google Scholar 

  179. Lee DU, Agarwal S, Rao A (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16(5):649–660

    PubMed  CAS  Google Scholar 

  180. Fields PE, Lee GR, Kim ST et al (2004) Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21(6):865–876

    PubMed  CAS  Google Scholar 

  181. Polansky JK, Kretschmer K, Freyer J et al (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663

    PubMed  CAS  Google Scholar 

  182. Polansky JK, Schreiber L, Thelemann C, et al. (2010) Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med

  183. Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9(2):83–89

    PubMed  CAS  Google Scholar 

  184. Liu J, Lluis A, Illi S et al (2010) T regulatory cells in cord blood—FOXP3 demethylation as reliable quantitative marker. PLoS One 5(10):e13267

    PubMed  Google Scholar 

  185. Kim EG, Shin HJ, Lee CG et al (2010) DNA methylation and not allelic variation regulates STAT6 expression in human T cells. Clin Exp Med 10(3):143–152

    PubMed  CAS  Google Scholar 

  186. Bhavsar P, Ahmad T, Adcock IM (2008) The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol 121(3):580–584

    PubMed  CAS  Google Scholar 

  187. Wang L, Tao R, Hancock WW (2009) Using histone deacetylase inhibitors to enhance Foxp3(+) regulatory T-cell function and induce allograft tolerance. Immunol Cell Biol 87(3):195–202

    PubMed  CAS  Google Scholar 

  188. Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307

    PubMed  CAS  Google Scholar 

  189. de Zoeten EF, Wang L, Butler K et al (2011) Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells. Mol Cell Biol 31(10):2066–2078

    PubMed  Google Scholar 

  190. Taganov KD, Boldin MP, Chang KJ et al (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33):12481–12486

    PubMed  CAS  Google Scholar 

  191. Thai TH, Calado DP, Casola S et al (2007) Regulation of the germinal center response by microRNA-155. Science 316(5824):604–608

    PubMed  CAS  Google Scholar 

  192. Sonkoly E, Janson P, Majuri ML et al (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126(3):581–589, e581-520

    PubMed  CAS  Google Scholar 

  193. Baltimore D, Boldin MP, O'Connell RM et al (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9(8):839–845

    PubMed  CAS  Google Scholar 

  194. Mattes J, Collison A, Plank M et al (2009) Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 106(44):18704–18709

    PubMed  CAS  Google Scholar 

  195. Lu TX, Hartner J, Lim EJ et al (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187(6):3362–3373

    PubMed  CAS  Google Scholar 

  196. Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129(1):147–161

    PubMed  CAS  Google Scholar 

  197. Haas JD, Nistala K, Petermann F et al (2011) Expression of miRNAs miR-133b and miR-206 in the Il17a/f locus is co-regulated with IL-17 production in alphabeta and gammadelta T cells. PLoS One 6(5):e20171

    PubMed  CAS  Google Scholar 

  198. Pascual M, Suzuki M, Isidoro-Garcia M et al (2011) Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics 6(9)

  199. Breton CV, Byun HM, Wang X et al (2011) DNA methylation in the arginase-nitric oxide synthase pathway is associated with exhaled nitric oxide in children with asthma. Am J Respir Crit Care Med 184(2):191–197

    PubMed  CAS  Google Scholar 

  200. Isidoro-Garcia M, Sanz C, Garcia-Solaesa V et al (2011) PTGDR gene in asthma: a functional, genetic, and epigenetic study. Allergy 66(12):1553–1562

    PubMed  CAS  Google Scholar 

  201. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D et al (2009) Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One 4(11):e7845

    PubMed  Google Scholar 

  202. Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20(1):63–68

    PubMed  CAS  Google Scholar 

  203. Kovacheva VP, Mellott TJ, Davison JM et al (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem 282(43):31777–31788

    PubMed  CAS  Google Scholar 

  204. Waterland RA, Lin JR, Smith CA et al (2006) Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 15(5):705–716

    PubMed  CAS  Google Scholar 

  205. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104(32):13056–13061

    PubMed  CAS  Google Scholar 

  206. Bromer JG, Zhou Y, Taylor MB et al (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24(7):2273–2280

    PubMed  CAS  Google Scholar 

  207. Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    PubMed  CAS  Google Scholar 

  208. Breton CV, Byun HM, Wenten M et al (2009) Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 180(5):462–467

    PubMed  CAS  Google Scholar 

  209. Launay JM, Del Pino M, Chironi G et al (2009) Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One 4(11):e7959

    PubMed  Google Scholar 

  210. Donkena KV, Young CY, Tindall DJ (2010) Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int 2010:302051

    PubMed  Google Scholar 

  211. Guerrero-Preston R, Goldman LR, Brebi-Mieville P et al (2010) Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 5(6)

  212. Terry MB, Ferris JS, Pilsner R et al (2008) Genomic DNA methylation among women in a multiethnic New York City birth cohort. Cancer Epidemiol Biomarkers Prev 17(9):2306–2310

    PubMed  CAS  Google Scholar 

  213. Suter M, Abramovici A, Showalter L et al (2010) In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism 59(10):1481–1490

    PubMed  CAS  Google Scholar 

  214. Michels KB, Harris HR, Barault L (2011) Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 6(9):e25254

    PubMed  CAS  Google Scholar 

  215. Ito K, Lim S, Caramori G et al (2001) Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15(6):1110–1112

    PubMed  CAS  Google Scholar 

  216. Vuillermin PJ, Ponsonby AL, Saffery R et al (2009) Microbial exposure, interferon gamma gene demethylation in naive T-cells, and the risk of allergic disease. Allergy 64(3):348–353

    PubMed  CAS  Google Scholar 

  217. Brand S, Teich R, Dicke T et al (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128(3):618–625, e611-617

    PubMed  CAS  Google Scholar 

  218. Baccarelli A, Wright RO, Bollati V et al (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179(7):572–578

    PubMed  CAS  Google Scholar 

  219. Perera F, Tang WY, Herbstman J et al (2009) Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 4(2):e4488

    PubMed  Google Scholar 

  220. Liu J, Ballaney M, Al-alem U et al (2008) Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 102(1):76–81

    PubMed  CAS  Google Scholar 

  221. Nadeau K, McDonald-Hyman C, Noth EM et al (2010) Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 126(4):845–852, e810

    PubMed  CAS  Google Scholar 

  222. Ji H, Khurana Hershey GK (2012) Genetic and epigenetic influence on the response to environmental particulate matter. J Allergy Clin Immunol 129(1):33–41

    PubMed  CAS  Google Scholar 

  223. Schalkwyk LC, Meaburn EL, Smith R et al (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86(2):196–212

    PubMed  CAS  Google Scholar 

  224. Kerkel K, Spadola A, Yuan E et al (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40(7):904–908

    PubMed  CAS  Google Scholar 

  225. Zhang D, Cheng L, Badner JA et al (2010) Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 86(3):411–419

    PubMed  CAS  Google Scholar 

  226. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33

    PubMed  CAS  Google Scholar 

  227. Munthe-Kaas MC, Torjussen TM, Gervin K et al (2010) CD14 polymorphisms and serum CD14 levels through childhood: a role for gene methylation? J Allergy Clin Immunol 125(6):1361–1368

    PubMed  CAS  Google Scholar 

  228. Friso S, Choi SW, Girelli D et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 99(8):5606–5611

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Drs. Wang and Hong have been supported in part by the Food Allergy Initiative, the National Institute of Allergy and Infectious Diseases (PI: Wang, R21AI079872, R21AI088609, U01AI090727), and the Department of Defense (PI: Wang, W81XWH-10-1-0123). We thank Tami Bartell for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Wang.

Additional information

This article is published as part of the Special Issue on Food Allergy [34:6].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, X., Wang, X. Early life precursors, epigenetics, and the development of food allergy. Semin Immunopathol 34, 655–669 (2012). https://doi.org/10.1007/s00281-012-0323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0323-y

Keywords

Navigation