Skip to main content

Advertisement

Log in

Synthesis and Characterization of CeO2, Gr and rGO Nanocomposites at Different Temperature

  • Advances in Characterization of Functional Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Novel cerium oxide (CeO2) nanoparticles (NPs), CeO2-Gr and CeO2-rGO nanocomposites with graphite (Gr), and different degrees (100°C, 300°C, and 500°C) of reduced graphene oxide (rGO) have been synthesized via a one-pot hydrothermal process in the presence of cetyltrimethylammonium bromide and aqueous ammonia. The obtained crystalline size of the CeO2 NPs was 27.19 nm from the XRD analysis, and this decreased to 10.46 nm in CeO2-rGO500. FTIR spectroscopy confirmed the presence of hydroxyl, carboxyl, and epoxy functional groups in the layers of the obtained nanocomposites. TGA/DSC analysis revealed attached CeO2 NPs over graphite and different degrees of rGO nanomaterials. The atomic concentrations of C1s, O1s, and Ce3d in prepared nanocomposites were 29.92%, 52.65%, and 17.43%, respectively. Huge enhancement was achieved for the CeO2-rGO500 nanocomposite in the atomic concentration of C1s (66.55%) and Ce3d (27.28%). The anchoring CeO2 nanocrystal on the rGO lattice structure dispersed uniformly and prevented the agglomeration over the thin film of carbon atoms, also enhancing the physicochemical properties, such as electric, thermal, morphology, and redox. However, the structural and physiochemical behavior of CeO2 NPs, CeO2-Gr, and CeO2-rGO nanocomposite materials is still controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Li, Q. Sun, M. Kong, W. Shi, J. Huang, J. Tang, and X. Zhao, J. Phys. Chem. C 115, 14050–14057. https://doi.org/10.1021/jp202720g (2011).

    Article  Google Scholar 

  2. C. Xu and X. Qu, NPG Asia Mater. 6, e90. (2014). https://doi.org/10.1038/am.2013.88.

  3. S. Das, D. Pandey, J. Thomas, and T. Roy, Adv. Mater. 31, 1802722. https://doi.org/10.1002/adma.201802722 (2019).

    Article  Google Scholar 

  4. M.Z. Iqbal, and A.U. Rehman, Sol Energy 169, 634. https://doi.org/10.1016/j.solener.2018.04.041 (2018).

    Article  Google Scholar 

  5. J. Paier, C. Penschke, and J. Sauer, Chem. Rev. 113, 3949. https://doi.org/10.1021/cr3004949 (2013).

    Article  Google Scholar 

  6. D.R. Mullins, Surf. Sci. Rep. 70, 42. https://doi.org/10.1016/j.surfrep.2014.12.001 (2015).

    Article  Google Scholar 

  7. S. Britto, V. Ramasamy, P. Murugesan, B. Neppolian, and T. Kavinkumar, Diam. Relat. Mater. 105, 107808. https://doi.org/10.1016/j.diamond.2020.107808 (2020).

    Article  Google Scholar 

  8. Y. Liang, Y. Li, H. Wang, and H. Dai, J. Am. Chem. Soc. 135, 2013. https://doi.org/10.1021/ja3089923 (2013).

    Article  Google Scholar 

  9. S.K. Tiwari, R.K. Mishra, S.K. Ha, and A. Huczko, Chem. Nano. Mater. 4, 598. https://doi.org/10.1002/cnma.201800089 (2018).

    Article  Google Scholar 

  10. D.M. El-Gendy, R.A. Hameed, A.M. Al-Enizi, M. Bakrey, M. Ubaidullah, and A. Yousef, Ceram. Int. 46(17), 27437. https://doi.org/10.1016/j.ceramint.2020.07.230 (2020).

    Article  Google Scholar 

  11. M. Ubaidullah, J. Ahmed, T. Ahamad, S.F. Shaikh, S.M. Alshehri, and A.M. Al-Enizi, Mater. Lett. 266, 127492. https://doi.org/10.1016/j.matlet.2020.127492 (2020).

    Article  Google Scholar 

  12. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, and A. Rousset, Carbon 39(4), 507. https://doi.org/10.1016/S0008-6223(00)00155-X (2001).

    Article  Google Scholar 

  13. H.T. Larijani, and M. Khorshidian, Appl. Surf. Sci. 492, 826. https://doi.org/10.1016/j.apsusc.2019.05.149 (2019).

    Article  Google Scholar 

  14. Z.E. Hughes, and T.R. Walsh, Nanoscale 7, 6883. https://doi.org/10.1039/C5NR00690B (2015).

    Article  Google Scholar 

  15. X. Qin, Y. Huang, K. Wang, T. Xu, S. Li, M. Zhao, Y. Wang, and Q. Chen, Carbon 152, 459. https://doi.org/10.1016/j.carbon.2019.06.028 (2019).

    Article  Google Scholar 

  16. C. Lavorato, A. Primo, R. Molinari, and H. Garci, ACS Catal. 4, 497. https://doi.org/10.1021/cs401068m (2014).

    Article  Google Scholar 

  17. M. Srivastava, A.K. Das, P. Khanra, N.H. Kim, and J.H. Lee, Open J. Adv. Mater. Res. 747, 242. (2013).

    Article  Google Scholar 

  18. P.M. Stalin, T.V. Arjunan, M.M. Matheswaran, and N. Sadanandam, J. Therm. Anal. Calorim. 135, 29. https://doi.org/10.1007/s10973-017-6865-4 (2019).

    Article  Google Scholar 

  19. M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, and J.H. Lee, J. Mater. Chem. A 1, 9792. https://doi.org/10.1039/C3TA11311F (2013).

    Article  Google Scholar 

  20. F.X. Hu, J. Le, S.J. Bao, L. Yu, and C.M. Li, Biosens. Bioelectron. 70, 310. https://doi.org/10.1016/j.bios.2015.03.056 (2015).

    Article  Google Scholar 

  21. D. Joung, V. Singh, S. Park, and A. Schulte, Phys. Chem. C 115, 24494. https://doi.org/10.1021/jp206485v (2011).

    Article  Google Scholar 

  22. B. Wu, L. Xiao, M. Zhang, C. Yang, Q. Li, G. Li, Q. He, and J. Liu, Solid State Chem. 296, 122023. https://doi.org/10.1016/j.jssc.2021.122023 (2021).

    Article  Google Scholar 

  23. J. Liu, L. Sun, G. Li, J. Hu, and Q. He, Mater. Res. Bull. 133, 111050. https://doi.org/10.1016/j.materresbull.2020.111050 (2021).

    Article  Google Scholar 

  24. F.X. Hu, J. Le Xie, S.J. Bao, L. Yu, and C.M. Li, Biosens. Bioelectron. 70, 310. https://doi.org/10.1016/j.bios.2015.03.056 (2015).

    Article  Google Scholar 

  25. S. Yu, Q. Liu, W. Yang, K. Han, Z. Wang, and H. Zhu, Electrochim. Acta 94, 245. https://doi.org/10.1016/j.electacta.2013.01.149 (2013).

    Article  Google Scholar 

  26. W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc. 80, 1339. https://doi.org/10.1021/ja01539a017 (1958).

    Article  Google Scholar 

  27. P. Kumar, N. Divya, and J.K. Ratan. Sustain. Eng. Lect. Notes Civ. Eng., 30, 85 (2019). https://doi.org/10.1007/978-981-13-6717-59.

  28. P. Kumar, N. Divya, and J.K. Ratan, J. Iran. Chem. Soc. 18, 1. https://doi.org/10.1007/s13738-020-02014-w (2020).

    Article  Google Scholar 

  29. S.M. Mousavi, A. Niaei, M.J. Gómez, and D. Abaladejo-Fuentes, Mater. Chem. Phys. 143, 921. https://doi.org/10.1016/j.matchemphys.2013.09.017 (2014).

    Article  Google Scholar 

  30. Z. Xiong, L.L. Zhang, J. Ma, and X.S. Zhao, Chem. Commun. 46, 6099. https://doi.org/10.1039/C0CC01259A (2010).

    Article  Google Scholar 

  31. G. Xiang, J. He, T. Li, J. Zhuang, and X. Wang, Nanoscale 3, 3737. https://doi.org/10.1039/C1NR10439J (2011).

    Article  Google Scholar 

  32. J. Zhang, Z. Xiong, and X.S. Zha, J. Mater. Chem. 21, 3634. https://doi.org/10.1039/C0JM03827J (2011).

    Article  Google Scholar 

  33. H. Bärnighausen, and G. Schiller, J. Less-common Metals 110, 385. https://doi.org/10.1016/0022-5088(85)90347-9 (1985).

    Article  Google Scholar 

  34. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus, ACS Catal. 2, 949. https://doi.org/10.1021/cs200621c (2012).

    Article  Google Scholar 

  35. G. Wang, Q. Mu, T. Chen, and Y. Wang, J. Alloy. Compd. 493, 202. https://doi.org/10.1016/j.jallcom.2009.12.053 (2010).

    Article  Google Scholar 

  36. N. Padmanathan, and S. Selladurai, Ionics 20, 409. https://doi.org/10.1007/s11581-013-0989-8 (2014).

    Article  Google Scholar 

  37. A.S. Dezfuli, M.R. Ganjali, P. Norouzi, and F. Faridbod, J. Mater. Chem. B 3, 2362. https://doi.org/10.1039/C4TB01847H (2015).

    Article  Google Scholar 

  38. R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel, and K. Ariga, J. Mater. Chem. A 2, 18480. https://doi.org/10.1039/C4TA03996C (2014).

    Article  Google Scholar 

  39. G. Wang, Q. Mu, T. Chen, and Y. Wang, J. Alloys Compd. 493, 202. https://doi.org/10.1016/j.jallcom.2009.12.053 (2010).

    Article  Google Scholar 

  40. S. Sagadevan, M.R. Johan, and J.A. Lett, Appl. Phys. A 125, 1. https://doi.org/10.1007/s00339-019-2625-6 (2019).

    Article  Google Scholar 

  41. C.Z. Yuan, B. Gao, L.F. Shen, S.D. Yang, L. Hao, X.J. Lu, F. Zhang, L.J. Zhang, and X.G. Zhang, Nanoscale 3, 529. https://doi.org/10.1039/C0NR00423E (2011).

    Article  Google Scholar 

  42. M. Vanitha, Keerthi, S. Vadivel, and N. Balasubramanian, Desalin Water Treat., 54. 2748 (2015). https://doi.org/10.1080/19443994.2014.903207.

  43. Y.W. Hartati, S.N. Topkaya, S. Gaffar, H.H. Bahti, and A.E. Cetin, RSC Adv. 11, 16216. https://doi.org/10.1039/D1RA00637A (2021).

    Article  Google Scholar 

  44. Y. Yu, X. Wang, W. Gao, P. Li, W. Yan, S. Wu, Q. Cui, W. Song, and K. Ding, J. Mater. Chem. A 5(14), 6656. https://doi.org/10.1039/C6TA10415K (2017).

    Article  Google Scholar 

  45. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, and A.K. Sood, Nat. Nanotechnol. 3, 210. https://doi.org/10.1038/nnano.2008.67 (2008).

    Article  Google Scholar 

  46. S. Kumar, A.K. Ojha, D. Patrice, B.S. Yadav, and A. Materny, Phys. Chem. Chem. Phys. 18, 11157. https://doi.org/10.1039/C5CP04457J (2016).

    Article  Google Scholar 

  47. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, and M. Ishigami, ACS Nano 5, 1594. https://doi.org/10.1021/nn1031017 (2011).

    Article  Google Scholar 

  48. C. Min, Z. He, D. Liu, W. Jia, J. Qian, Y. Jin, and S. Li, ChemistrySelect 4, 4615. https://doi.org/10.1002/slct.201900862 (2019).

    Article  Google Scholar 

  49. M.S. Sher Shah, A.R. Park, K. Zhang, J.H. Park, and P.J. Yoo, ACS Appl. Mater. Interfaces, 4, 3893 (2012). https://doi.org/10.1021/am301287m.

  50. H. Yang, G.H. Guai, C. Guo, Q. Song, S.P. Jiang, and Y. Wang, Phys. Chem. C 115, 12209. https://doi.org/10.1021/jp201178a (2011).

    Article  Google Scholar 

  51. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, and D.L. Huber, J. Phys. Chem. C 113, 19812. https://doi.org/10.1021/jp905456f (2009).

    Article  Google Scholar 

  52. J. Lee, K.S. Novoselov, and H.S. Shin, ACS Nano 5, 608. https://doi.org/10.1021/nn103004c (2011).

    Article  Google Scholar 

  53. J. Song, L. Xu, C. Zhou, R. Xing, Q. Dai, D. Liu, H. Song, and A.C.S. Appl, Mater. Interfaces 5, 12928. https://doi.org/10.1021/am403508f (2013).

    Article  Google Scholar 

  54. C. Korsvik, S. Patil, S. Seal, and W.T. Self, Chem. Commun. 10, 1056. https://doi.org/10.1039/B615134E (2007).

    Article  Google Scholar 

  55. R.S. Kalubarme, M.S. Cho, J.K. Kim, and C.J. Park, Nanotechnology 23, 435703. https://doi.org/10.1088/0957-4484/23/43/435703 (2012).

    Article  Google Scholar 

  56. J.V. Rojas, M. Toro-Gonzalez, M.C. Molina-Higgins, and C.E. Castano, Mater. Sci. Eng. B 205, 28. https://doi.org/10.1016/j.mseb.2015.12.005 (2016).

    Article  Google Scholar 

  57. M. Vanitha, P. Cao, and N. Balasubramanian, J. Alloys Compd. 644, 534. https://doi.org/10.1016/j.jallcom.2015.03.221 (2015).

    Article  Google Scholar 

  58. N. Alhokbany, J. Ahmed, M. Ubaidullah, S. Mutehri, M.M. Khan, T. Ahamad, and S.M. Alshehri, J. Mater. Sci. Mater. Electron. 31(19), 16701. https://doi.org/10.1007/s10854-020-04224-7 (2020).

    Article  Google Scholar 

  59. Z. Ling, C. Yu, X. Fan, S. Liu, J. Yang, M. Zhang, G. Wang, N. Xiao, and J. Qiu, Nanotechnology 26, 374003. https://doi.org/10.1088/0957-4484/26/37/374003 (2015).

    Article  Google Scholar 

  60. S. Ponce, M.A. Peña, and J.L. Fierro, Appl. Catal. B 24, 193. https://doi.org/10.1016/S0926-3373(99)00111-3 (2000).

    Article  Google Scholar 

  61. S. Yang, and L. Gao, J. Am. Chem. Soc. 128, 9330. https://doi.org/10.1021/ja063359h (2006).

    Article  Google Scholar 

  62. E. Granas, J. Knudsen, U.A. Schröder, T. Gerber, C. Busse, M.A. Arman, K. Schulte, J.N. Andersen, and T. Michely, ACS Nano 6, 9951. https://doi.org/10.1021/nn303548z (2012).

    Article  Google Scholar 

  63. W. Konicki, M. Aleksandrzak, D. Moszyński, and E. Mijowska, J. Colloid Interface Sci. 496, 188. https://doi.org/10.1016/j.jcis.2017.02.031 (2017).

    Article  Google Scholar 

  64. S.K. Jha, C.N. Kumar, R.P. Raj, N.S. Jha, and S. Mohan, Electrochim. Acta 120, 308. https://doi.org/10.1016/j.electacta.2013.12.051 (2014).

    Article  Google Scholar 

  65. S. Luo, X. Xu, G. Zhou, C. Liu, Y. Tang, and Y. Liu, J. Hazard. Mater. 274, 145. https://doi.org/10.1016/j.jhazmat.2014.03.062 (2014).

    Article  Google Scholar 

  66. H.T. Xing, J.H. Chen, X. Sun, Y.H. Huang, Z.B. Su, S.R. Hu, W. Weng, S.X. Li, H.X. Guo, W.B. Wu, and Y.S. He, Chem. Eng. Sci. 263, 280. https://doi.org/10.1016/j.cej.2014.10.111 (2015).

    Article  Google Scholar 

  67. Y. Lara-López, G. García-Rosales, and J. Jiménez-Becerril, J. Rare Earths 35, 551. https://doi.org/10.1016/S1002-0721(17)60947-5 (2017).

    Article  Google Scholar 

  68. P. Manoj Kumar, K. Mylsamy, and P.T. Saravanakumar, Energy Sourc. A Recov. Util. Environ. Effects, 42, 2420 (2020). https://doi.org/10.1080/15567036.2019.1607942.

  69. S.C. Lin, and H.H. Al-Kayiem, Sol Energy 132, 267. https://doi.org/10.1016/j.solener.2016.03.004 (2016).

    Article  Google Scholar 

  70. M. Krystek, A. Ciesielski, and P. Samorì, Adv. Funct. Mater. 31, 2101887. https://doi.org/10.1002/adfm.202101887 (2021).

    Article  Google Scholar 

  71. H. Zou, Y.S. Lin, N. Rane, and T. He, Ind. Eng. Chem. Res. 43, 3019. https://doi.org/10.1021/ie030676d (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Divya.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 702 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Ratan, J.K. & Divya, N. Synthesis and Characterization of CeO2, Gr and rGO Nanocomposites at Different Temperature. JOM 74, 1828–1839 (2022). https://doi.org/10.1007/s11837-021-05084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05084-0

Navigation