Skip to main content
Log in

1H NMR analysis of Citrus macrophylla subjected to Asian citrus psyllid (Diaphorina citri Kuwayama) feeding

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The Asian citrus psyllid (ACP) is a phloem-feeding insect that can host and transmit the bacterium Candidatus Liberibacter asiaticus (CLas), which is the putative causative agent of the economically important citrus disease, Huanglongbing (HLB). ACP are widespread in Florida, and are spreading in California; they are the primary mode of CLas transmission in citrus groves. To understand the effects of ACP feeding, different numbers of ACP [0 ACP (control), 5 ACP (low), 15–20 ACP (medium), and 25–30 ACP (high)] were allowed to feed on Citrus macrophylla greenhouse plants. After 7 days of feeding, leaves were collected and analyzed using 1H NMR. Metabolite concentrations from leaves of trees with ACP feeding had higher variability than control trees. Many metabolites were higher in concentration in the low ACP feeding group relative to control; however, leaves from trees with high ACP feeding had lower concentrations of many metabolites relative to control, including many amino acids such as phenylalanine, arginine, isoleucine, valine, threonine, and leucine. These results suggest ACP density-dependent changes in primary metabolism that can be measured by 1H NMR. The implications in plant defense are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant–insect interactions. Curr Opin Plant Biol 4:351–358

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA, Båstrup-Spohr L (2008) Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 189–211

    Chapter  Google Scholar 

  • Chin EL, Mishchuk DO, Breksa AP, Slupsky CM (2014) Metabolite signature of Candidatus Liberibacter asiaticus infection in two citrus varieties. J Agric Food Chem 62:6585–6591

    Article  CAS  PubMed  Google Scholar 

  • Dadd R, Krieger D (1968) Dietary amino acid requirements of the aphid, Myzus persicae. J Insect Physiol 14:741–764

    Article  CAS  Google Scholar 

  • Douglas A (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57:747–754

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Chen C, Brlansky R, Gmitter F Jr, Li ZG (2010) Changes in carbohydrate metabolism in Citrus sinensis infected with ‘Candidatus Liberibacter asiaticus’. Plant Pathol 59:1037–1043

    Article  CAS  Google Scholar 

  • Giordanengo P et al (2010) Compatible plant–aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523

    Article  PubMed  Google Scholar 

  • Gómez S, Ferrieri RA, Schueller M, Orians CM (2010) Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol 188:835–844

    Article  PubMed  Google Scholar 

  • Grafton-Cardwell EE, Godfrey KE, Rogers ME, Childers CC, Stansly PA (2005) Asian citrus psyllid. UCANR Publications. http://anrcatalog.ucanr.edu/pdf/8205.pdf. Accessed 27 July 2016

  • Grafton-Cardwell EE, Stelinski LL, Stansly PA (2013) Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu Rev Entomol 58:413–432

    Article  CAS  PubMed  Google Scholar 

  • Halbert SE, Manjunath KL (2004) Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Fla Entomol 87:330–353

    Article  Google Scholar 

  • Heidel A, Baldwin I (2004) Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant, Cell Environ 27:1362–1373

    Article  CAS  Google Scholar 

  • Heil M (2002) Ecological costs of induced resistance. Curr Opin Plant Biol 5:345–350

    Article  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Kant M et al (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot London 115:1015–1051

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Sagaram US, Burns JK, Li JL, Wang N (2009) Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses. Phytopathology 99:50–57

    Article  PubMed  Google Scholar 

  • Korth KL, Dixon RA (1997) Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol 115:1299–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JA, Halbert SE, Dawson WO, Robertson CJ, Keesling JE, Singer BH (2015) Asymptomatic spread of huanglongbing and implications for disease control. Proc Natl Acad Sci USA 112:7605–7610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J Microbiol Meth 66:104–115

    Article  CAS  Google Scholar 

  • Liu D, Johnson L, Trumble JT (2006) Differential responses to feeding by the tomato/potato psyllid between two tomato cultivars and their implications in establishment of injury levels and potential of damaged plant recovery. Insect Sci 13:195–204

    Article  Google Scholar 

  • Malik NS, Perez JL, Kunta M, Patt JM, Mangan RL (2014) Changes in free amino acids and polyamine levels in Satsuma leaves in response to Asian citrus psyllid infestation and water stress. Insect Sci 21:707–716

    Article  CAS  PubMed  Google Scholar 

  • Manjunath KL, Halbert SE, Ramadugu C, Webb S, Lee RF (2008) Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 98:387–396

    Article  CAS  PubMed  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Morath S, Pratt P, Silvers C, Center T (2006) Herbivory by Boreioglycaspis melaleucae (Hemiptera: Psyllidae) accelerates foliar senescence and abscission in the invasive tree Melaleuca quinquenervia. Environ Entomol 35:1372–1378

    Article  Google Scholar 

  • Mozoruk J, Hunnicutt LE, Cave RD, Hunter WB, Bausher MG (2006) Profiling transcriptional changes in Citrus sinensis (L.) Osbeck challenged by herbivory from the xylem-feeding leafhopper Homalodisca coagulata (Say) by cDNA macroarray analysis. Plant Sci 170:1068–1080

    Article  CAS  Google Scholar 

  • Newingham BA, Callaway RM, Bassirirad H (2007) Allocating nitrogen away from a herbivore: a novel compensatory response to root herbivory. Oecologia 153:913–920

    Article  PubMed  Google Scholar 

  • Orians CM, Thorn A, Gómez S (2011) Herbivore-induced resource sequestration in plants: why bother? Oecologia 167:1–9

    Article  PubMed  Google Scholar 

  • Pelz-Stelinski KS, Brlansky RH, Ebert TA, Rogers ME (2010) Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). J Econ Entomol 103:1531–1541

    Article  CAS  PubMed  Google Scholar 

  • Polek M, Vidalakis G, Godfrey K (2007) Citrus bacterial canker disease and Huanglongbing (citrus greening). UCANR Publications. http://anrcatalog.ucanr.edu/pdf/8218.pdf Accessed 26 July 2016

  • Ray P, Hill MP (2016) More is not necessarily better: the interaction between insect population density and culture age of fungus on the control of invasive weed water hyacinth. Hydrobiologia 766:189–200

    Article  Google Scholar 

  • Sandström J, Telang A, Moran N (2000) Nutritional enhancement of host plants by aphids—a comparison of three aphid species on grasses. J Insect Physiol 46:33–40

    Article  PubMed  Google Scholar 

  • Sardans J, Gargallo-Garriga A, Pérez-Trujillo M, Parella T, Seco R, Filella I, Peñuelas J (2014) Metabolic responses of Quercus ilex seedlings to wounding analysed with nuclear magnetic resonance profiling. Plant Biol 16:395–403

    Article  CAS  PubMed  Google Scholar 

  • Schultz JC, Appel HM, Ferrieri AP, Arnold TM (2013) Flexible resource allocation during plant defense responses. Front Plant Sci 4:1–11

    Article  Google Scholar 

  • Schweiger R, Heise AM, Persicke M, Müller C (2014) Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant Cell Environ 37:1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Seigler DS (1998) Phenylpropanoids. Plant secondary metabolism. Springer, Boston, pp 106–129

    Chapter  Google Scholar 

  • Sétamou M, Flores D, French JV, Hall DG (2008) Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus. J Econ Entomol 101:1478–1487

    Article  PubMed  Google Scholar 

  • Sétamou M, Alabi OJ, Kunta M, Jifon JL, da Graça JV (2016) Enhanced acquisition rates of ‘Candidatus Liberibacter asiaticus’ by the Asian citrus psyllid (Hemiptera: Liviidae) in the presence of vegetative flush growth in citrus. J Econ Entomol 109:1973–1978

    Article  PubMed  Google Scholar 

  • Simmonds MS (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    Article  CAS  PubMed  Google Scholar 

  • Singerman A, Useche P (2016) Impact of citrus greening on citrus operations in Florida. University of Florida, IFAS Citrus Extension. https://edis.ifas.ufl.edu/fe983. Accessed 24 Jan 2017

  • Steinbauer M, Burns A, Hall A, Riegler M, Taylor G (2014) Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence? Oecologia 176:1061–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner AD, Gómez S, Osorio S, Fernie AR, Orians CM (2011) Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: a whole plant perspective. J Chem Ecol 37:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Tomlin E, Sears M (1992) Effects of Colorado potato beetle and potato leafhopper on amino acid profile of potato foliage. J Chem Ecol 18:481–488

    Article  CAS  PubMed  Google Scholar 

  • USDA, APHIS, PPQ (2014) National quarantine boundaries for Asian citrus psyllid and citrus greening. https://www.aphis.usda.gov/plant_health/plant_pest_info/citrus_greening/downloads/pdf_files/nationalquarantinemap.pdf Accessed 01 Aug 2017

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442

    Article  CAS  PubMed  Google Scholar 

  • Widarto HT, Van Der Meijden E, Lefeber AW, Erkelens C, Kim HK, Choi YH, Verpoorte R (2006) Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. J Chem Ecol 32:2417–2428

    Article  CAS  PubMed  Google Scholar 

  • Will T, Furch AC, Zimmermann MR (2013) How phloem-feeding insects face the challenge of phloem-located defenses. Front Plant Sci 4:1–12

    Article  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinform 55:14.10.1–14.10.91

    Article  Google Scholar 

  • Xu C, Xia Y, Li K, Ke C (1988) Further study of the transmission of citrus huanglongbing by a psyllid, Diaphorina citri Kuwayama. In: LW Timmer, SM Garnsey, and L. Navarro (eds) Proceedings of the 10th conference of the international organization of citrus virologists. University of California, Riverside, pp 243–248

  • Zhang X, Breksa AP, Mishchuk DO, Fake CE, O’Mahony MA, Slupsky CM (2012) Fertilisation and pesticides affect mandarin orange nutrient composition. Food Chem 134:1020–1024

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn J-E, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support for this project from the Citrus Research Board. This project was made possible in part by support from the USDA National Institute of Food and Agriculture Hatch Project 1005945. We thank Steve Stearns for assistance with sample preparation, Dr. Cythia LeVesque for performing qPCR on the ACP colonies, Drs. Michelle Cilia, John Ramsey, and Greg McCollum for their suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Slupsky.

Additional information

Handling Editor: Gimme Walter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, E., Godfrey, K., Polek, M. et al. 1H NMR analysis of Citrus macrophylla subjected to Asian citrus psyllid (Diaphorina citri Kuwayama) feeding. Arthropod-Plant Interactions 11, 901–909 (2017). https://doi.org/10.1007/s11829-017-9546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9546-0

Keywords

Navigation