Skip to main content

Abstract

Compounds derived from phenylalanine and/or tyrosine are among the most common of all secondary metabolites in plants, bacteria, and fungi. These include phenylpropanoid compounds as well as many C6-C1 compounds (Fig. 8.1) (Gross, 1981). Relatively simple C6-C3 compounds, such as cinnamic (1) and p-coumaric acids (2), are modified to produce more complex derivatives (Fig. 8.2) (Conn, 1981, 1986). The term “phenylpropanoid” is sometimes used to refer to any compound bearing a 3-carbon chain attached to 6-carbon aromatic ring (C6-C3 compounds). Most phenylpropanoids are formed from cinnamic or p-coumaric acids. In this chapter, the origin of cinnamic and p-coumaric acids and their simple derivatives will be discussed initially, as these intermediate substances are precursors to most other groups of related compounds. Various other modified C6-C3 compounds, such as simple phenylpropanoids, lignans, neo-lignans, lignin, and hydroxybenzoic acids, will then be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayres, D. C. and J. D. Loike, Chemistry and Pharmacology of Natural Products: Lignans—Chemical, Biological, and Clinical Properties, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  • Berenbaum, M. R., Brementown revisited: Interactions among allelochemicals in plants in Chemically Mediated Interactions between Plants and Other Organisms (G. A. Cooper-Driver, T. Swain and E. E. Conn, eds.), Recent Advances in Phytochemistry Vol. 19) 139–169, Plenum, New York, 1985.

    Google Scholar 

  • Berenbaum, M. R. and J. J. Neal, Synergism between myristicin and xanthotoxin, a naturally co-occurring plant toxicant, J. Chem. Ecol., 11, 1349–1358 (1985).

    Article  CAS  Google Scholar 

  • Berenbaum, M. R. and J. J. Neal, Interactions among allelochemi-cals and insect resistance in crop plants, in Allelochemicals: Role in Agriculture and Forestry (G. R. Waller, ed.), ACS Symposium Series 330, 417–430, American Chemical Society, Washington, DC, 1987.

    Google Scholar 

  • Binns, A. N., R. H. Chen, H. N. Wood, and D. G. Lynn, Cell division promoting activity of naturally occurring dehydroconi-feryl glucosides: Do cell wall components control cell division?, Proc. Natl. Acad. Sci., 84, 980–984 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Blum, U. and B. R. Dalton, Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture, J. Chem. Ecol., 11, 279–301 (1985a).

    Article  CAS  Google Scholar 

  • Blum, U., B. R. Dalton, and J. R. Shann, Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture, J. Chem. Ecol., 11, 619–641 (1985b).

    Article  CAS  Google Scholar 

  • Blum, U., S. B. Weed, and B. R. Dalton, Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings, Plant Soil, 98, 111–130 (1987).

    Article  CAS  Google Scholar 

  • Bonner, J. and A. W. Galston, Toxic substances from the culture media of guayule which may inhibit growth, Bot. Gaz., 706, 185–198 (1944).

    Article  Google Scholar 

  • Butt, V. S. and C. J. Lamb, Oxygenases and the metabolism of plant products, in Secondary Plant Products (E. E. Conn, ed.), Vol. 7 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 627–665, Academic Press, New York, 1981.

    Google Scholar 

  • Calis, I., A. A. Basaran, I. Saracoglu, O. Sticher and P. Rüedi, Phlinosides A, B, and C, three phenylpropanoid glycosides from Phlomis linearis, Phytochemistry, 29, 1253–1257 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Castro, O., J. Lopez, A. Vergara, and F. R. Stermitz, Phenylpropanoids in alkaloid-free species of Phoebe, J. Nat. Prod., 48, 640–641 (1985).

    Article  CAS  Google Scholar 

  • Conn, E. E. (ed.), Secondary Plant Products, Vol. 7 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), Academic Press, New York, 1981.

    Google Scholar 

  • Conn, E. E. (ed.), The Shikimic Acid Pathway, Recent Advances in Phytochemistry Vol. 20), Plenum Press, New York, 1986

    Google Scholar 

  • Cutler, H. G., Herbicidal compounds from higher plants, in Phytochemical Resources for Medicine and Agriculture (H. G. Nigg and D. S. Seigler, eds.), 205–226, Plenum Press, New York, 1992.

    Google Scholar 

  • Dalton, B. R., S. B. Weed, and U. Blum, Plant phenolic acids in soils: A comparison of extraction procedures, Soil Sci. Soc. Am. J., 51, 1515–1521 (1987).

    Article  CAS  Google Scholar 

  • Davin, L. B., N. G. Lewis, and T. Umezawa, Phenylpropanoid metabolism: Biosynthesis of monolignols, lignans and neolignans, lignins, and suberins, in Phenolic Metabolism in Plants (H. A. Stafford and R. K. Ibrahim, eds.), Recent Advances in Phytochemistry Vol. 26, 325–375, Plenum Press, New York, 1992.

    Chapter  Google Scholar 

  • Dewick, P. M., The biosynthesis of shikimate metabolites, Nat. Prod. Rep., 1, 451–469 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Dodson, C. D., F. R. Stermitz, O. Castro C, and D. H. Janzen, Neolignans from fruits of Ocotea veraguensis, Phytochemistry, 26, 2037–2040 (1987).

    Article  CAS  Google Scholar 

  • Downum, K. R., Light-activated plant defence, New Phytol., 122, 4011-420(1992).

    Google Scholar 

  • Ellis, B. E., Natural products from plant tissue culture, Nat. Prod. Rep., 5, 581–612 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Fischer, N. H., N. Tanrisever, and G. B. Williamson, Allelopathy in the Florida scrub community as a model for natural herbicide actions, in Biologically Active Natural Products: Potential in Agriculture (H. G. Cutler, ed.), ACS Symposium Series 380, 233–249, American Chemical Society, Washington, DC, 1988.

    Chapter  Google Scholar 

  • Fishbein, L., J. Fawkes, H. L. Falk and S. Thompson, Thin-layer chromatography of rat bile and urine following intravenous administration of safrole, isosafrole, and dihydrosafrole, J. Chro-matogr., 29, 267–273 (1967).

    Article  CAS  Google Scholar 

  • Friend, J., Phenolic substances and plant disease, in Biochemistry of Plant Phenolics (T. Swain, J. B. Harborne, and C. F. van Sumere, eds.), Recent Advances in Phytochemistry Vol. 12), 557–588, Plenum Press, New York, 1979.

    Chapter  Google Scholar 

  • Gottlieb, O. R., Neolignans, Fortschr. Chem. Org. Naturst., 35, 1–72 (1978).

    Article  CAS  Google Scholar 

  • Grand, C, Ferulic acid 5-hydroxylase: A new cytochrome P-450-dependent enzyme from higher plant microsomes involved in lignin biosynthesis, Federation of European Biochemical Societies (FEBS), 169, 7–11 (1984).

    Article  CAS  Google Scholar 

  • Grisebach, H., Lignins, in Secondary Plant Products (E. E. Conn, ed.), Vol. 7 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 457–478, Academic Press, New York, 1981.

    Google Scholar 

  • Gross, G. G., Phenolic acids, in Secondary Plant Products (E. E. Conn, ed.), Vol. 7 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 301–316, Academic Press, New York, 1981.

    Google Scholar 

  • Guerin, P. M., E. Stadler, and H. R. Buser, Identification of host plant attractants for the carrot fly, Psila rosae, J. Chem. Ecol., 9, 843–861 (1983).

    Article  CAS  Google Scholar 

  • Hanson, K. R. and E. A. Havir, Phenylalanine ammonia lyase, in Secondary Plant Products (E. E. Conn, ed.), Vol. 7 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 577–625, Academic Press, New York, 1981.

    Google Scholar 

  • Harborne, J. B., Introduction to Ecological Biochemistry, Academic Press, London, 1977; 2nd edition, 1982.

    Google Scholar 

  • Haslam, E., The Shikimate Pathway, Wiley, New York, 1974.

    Google Scholar 

  • Havir, E. A. and K. R. Hanson, Phenylalanine ammonia lyase. Evidence that the prosthetic group contains a dehydroolanyl residue and mechanism of action, Arch. Biochem. Biophys., 141, 1–17 (1970).

    Article  PubMed  Google Scholar 

  • Heller, W. and T. Kühnl, Elicitor induction of a microsomal 5-O-(4-coumaroyl)shikimate 3′-hydroxylase in parsley cell suspension cultures, Arch. Biochem. Biophys., 241, 453–550 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D. E. and P. M. Dewick, Cinnamic acid precursors of podophyllotoxin in Podophyllum hexandrum, Phytochemistry, 23, 1029–1035 (1984).

    Article  CAS  Google Scholar 

  • Jaffe, H., R. N. Huettel, A. B. Demilo, D. K. Hayes, and R. V. Rebois, Isolation and identification of a compound from soybean cyst nematode, Heterodera glycines, with sex pheromone activity, J. Chem. Ecol., 15, 2031–2043 (1989).

    Article  CAS  Google Scholar 

  • Jensen, R. A., Tyrosine and phenylalanine biosynthesis: Relationship between alternative pathways, regulation and subcellular location, in The Shikimic Acid Pathway (E. E. Conn, ed.), Recent Advances in Phytochemistry Vol. 20, 57–81, Plenum Press, New York, 1986.

    Chapter  Google Scholar 

  • Jimenez, C, M. C. Villaverde, R. Riguera, L. Castedo, and F. R. Stermitz, Three phenylpropanoid glycosides from Mussatia, Phytochemistry, 26, 1805–1810 (1987).

    Article  CAS  Google Scholar 

  • Kamikado, T., C. Chang, S. Murakoshi, A. Sakurai, and S. Tamura, Isolation and structure elucidation of growth inhibitors on silkworm larvae from Magnolia kobus DC, Agric. Biol. Chem., 39, 833–836 (1975).

    Article  CAS  Google Scholar 

  • Kinghorn, A. D., Plants as sources of medicinally and pharmaceutically important compounds, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), Plenum Press, New York, 1992.

    Google Scholar 

  • Klick, S. and K. Herrmann, Glucosides and glucose ester of hydroxybenzoic acids in plants, Phytochemistry, 27, 2177–2180 (1988).

    Article  CAS  Google Scholar 

  • Kühnl, T., U. Koch, W. Heller, and E. Wellmann, Chlorogenic acid biosynthesis: Characterization of a light-induced microsomal 5-O-(coumaroyl)-D-quinate/shikimate 3′-hydrolyase from carrot (Daucus carota L.) cell suspension cultures, Arch. Biochem. Biophys., 258, 226–232 (1987).

    Article  PubMed  Google Scholar 

  • Lampman, R. L., R. L. Metcalf, and J. F. Andersen, Semiochemical attractants of Diabrotica undecimpunctata howardii Barber, southern corn rootworm, and Diabrotica virgifera virgifera Leconte, the western com rootworm (Coleoptera: Chrysomelidae), J. Chem. Ecol., 13, 959–975 (1987).

    Article  CAS  Google Scholar 

  • Lavie, D., E. C. Levy, A. Cohen, M. Ebenari, and Y. Gutterman, New germination inhibitor from Aegilops ovata, Nature, 249, 388 (1974).

    Article  CAS  Google Scholar 

  • Leon, J., N. Yalpani, I. Raskin, and M. A. Lawton, Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco, Plant Physiol., 103, 323–328 (1993).

    PubMed  CAS  Google Scholar 

  • Levin, D. A., The chemical defenses of plants to pathogens and herbivores, Annu. Rev. Ecol. Syst., 7, 121–159 (1976).

    Article  CAS  Google Scholar 

  • Lewis, N. G. and E. Yamamoto, Lignin: Occurrence, biogenesis and biodégradation, Annu. Rev. Plant Physiol. Plant Mol. Biol., 41, 455–496 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P. and J. E. Casida, Myristicin, an insecticide and Synergist occurring naturally in the edible parts of parsnips, J. Agric. Food Chem., 11, 410–415 (1963).

    Article  CAS  Google Scholar 

  • Lindroth, R. L. and M. S. Pajutee, Chemical analysis of phenolic glycosides: Art, facts, and artifacts, Oecologia, 74, 144–148 (1987).

    Article  Google Scholar 

  • Lindroth, R. L., M. T. S. Hsia, and J. M. Scriber, Characterization of phenolic glycosides from quaking aspen, Biochem. Syst. Ecol., 15, 677–680 (1987a).

    Article  CAS  Google Scholar 

  • Lindroth, R. L., M. T. S. Hsia, and J. M. Scriber, Seasonal patterns in the phytochemistry of three Populus species, Biochem. Syst. Ecol., 15, 681–686 (1987b).

    Article  CAS  Google Scholar 

  • Lindroth, R. L., J. M. Scriber, and M. T. S. Hsia, Chemical ecology of the tiger swallowtail: Mediation of host use by phenolic glycosides, Ecology, 69, 814–822 (1988).

    Article  CAS  Google Scholar 

  • Lynn, D. G., R. H. Chen, K. S. Manning, and H. N. Wood, The structural characterization of endogenous factors from Vinca rosea crown gall tumors that promote cell division of tobacco cells, Proc. Natl. Acad. Sci., 84, 615–619 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Macrae, W. D. and G. H. N. Towers, Biological activities of lignans, Phytochemistry, 23, 1207–1220 (1984).

    Article  CAS  Google Scholar 

  • Macrae, W. D., J. B. Hudson, and G. H. N. Towers, The antiviral action of lignans, Planta Medica, 55, 531–535 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Mann, J., Secondary Metabolism, Clarendon Press, Oxford, 1978; 2nd edition, 1987.

    Google Scholar 

  • Mcpherson, J. K. and C. H. Muller, Allelopathic effects of Adenostoma fasciculatum, “chamise,” in the California chaparral, Ecol. Monogr., 39, 177–198 (1969).

    Article  Google Scholar 

  • Mcpherson, J. K., C. Chou, and C. H. Muller, Allelopathic constituents of the chaparral shrub Adenostoma fasciculatum, Phytochemistry, 10, 2925–2933 (1971).

    Article  CAS  Google Scholar 

  • Metcalf, R. L. and R. L. Lampman, Estragole analogues as attractants for corn rootworms (Coleoptera: Chrysomelidae), J. Ecol. Ent., 82, 123–129 (1989).

    CAS  Google Scholar 

  • Metcalf, R. L., W. C. Mitchell, T. R. Fukuto, and E. R. Metcalf, Attraction of the oriental fruit fly, Dacus dorsalis, to methyl eugenol and related olfactory stimulants, Proc. Natl. Acad. Sci., 72, 2501–2505 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Molgaard, P. and H. Ravn, Evolutionary aspects of caffeoyl ester distribution in dicotyledons, Phytochemistry, 27, 2411–2421 (1988).

    Article  CAS  Google Scholar 

  • Muller, C. H., The association of desert annuals with shrubs, Am. J. Bot., 40, 52–60 (1953).

    Article  Google Scholar 

  • Muller, C. H. and C. Chou, Phytotoxins: An ecological phase of phytochemistry, in Phytochemical Ecology (J. B. Harborne, ed.), 201–216, Academic Press, London, 1972.

    Google Scholar 

  • Neal, J. J., Myristicin, saffrole, and fagaramide as phytosynergists of xanthotoxin, J. Chem. Ecol., 15, 309–315 (1989).

    Article  CAS  Google Scholar 

  • Pabst, A., D. Barron, J. Adda, and P. Schreier, Phenylbutan-2-one ß-D-glucosides from raspberry fruit, Phytochemistry, 29, 3853–3858 (1990).

    Article  CAS  Google Scholar 

  • Pasteels, J. M., D. Daloze, and M. Rowell-Rahier, Chemical defence in chrysomelid eggs and neonate larvae, Physiol. Entomol., 11, 29–37 (1986).

    Article  CAS  Google Scholar 

  • Pasteels, J. M., M. Rowell-Rahier, J. C. Braekman, D. Daloze, and S. Duffey, Evolution of exocrine chemical defenses in leafbeetles (Coleoptera: Chrysomelidae), Experientia, 45, 295–300 (1989).

    Article  CAS  Google Scholar 

  • Pasteels, J. M., M. Rowell-Rahier, and M. J. Raupp, Plant-derived defense in chrysomelid beetles, in Novel Aspects of Insect-Plant Interactions (P. Barbosa and D. Letourneau, eds.), 235–272, Wiley, New York, 1988.

    Google Scholar 

  • Pelter, A., Lignans: Some properties and syntheses, in The Shikimic Acid Pathway, (E. E. Conn, ed.), Recent Advances in Phytochemistry Vol. 20, 201–241, Plenum Press, New York, 1986.

    Chapter  Google Scholar 

  • Poulton, J. E., Transmethylation and demethylation in the metabolism of secondary plant products, in Secondary Plant Products (E. E. Conn, ed.), Vol. 7 of The Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 667–723, Academic Press, New York, 1981.

    Google Scholar 

  • Pridham, J. B. and M. J. Saltmarsh, The biosynthesis of phenolicglycosides in plants, Biochem. J., 87, 218–224 (1963).

    PubMed  CAS  Google Scholar 

  • Raskin, I., Salicylate, a new plant hormone, Plant Physiol., 99, 799–803 (1992a).

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I., Role of salicylic acid in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 439–463 (1992).

    Article  CAS  Google Scholar 

  • Ravn, H. and L. Brimer, Structure and antibacterial activity of plantamajoside, a caffeic acid sugar ester from Plantago major subsp. major, Phytochemistry, 27, 3433–3437 (1988).

    Article  CAS  Google Scholar 

  • Rowell-Rahier, M. and J. M. Pasteels, Economics of chemical defense in Chrysomelinae, J. Chem. Ecol., 12, 1189–1203 (1986).

    Article  CAS  Google Scholar 

  • Saxena, B. P., O. Koul, K. Ticku, and C. K. Atal, A new insect chemosterilant isolated from Acorus calamus, Nature, 270, 512–513 (1977).

    Article  CAS  Google Scholar 

  • Schildknecht, H., Turgorins, hormones of the endogeneous daily rhythms of higher organized plants—detection, isolation, structure, synthesis and activity, Angew. Chem. Int. Ed., 22, 695–710 (1983).

    Article  Google Scholar 

  • Seigler, D. S., Role of lipids in plant resistance to insects, in Plant Resistance to Insects (P. A. Hedin, ed.), ACS Symposium Series 208, 303–327, American Chemical Society, Washington, DC, 1983.

    Chapter  Google Scholar 

  • Shoji, N. A., A. Iwasa, T. Takemoto, Y. Ishio, and Y. Ohizumi, Cardiotonic principles of ginger (Zingiber officinale Roscoe), J. Pharm. Sci., 71, 1174–1175 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Spencer, P. A. and G. H. N. Towers, Specificity of signal compounds detected by Agrobacterium tumefaciens, Phytochemistry, 27, 2781–2785 (1988).

    Article  CAS  Google Scholar 

  • Stachel, S. E., E. Messens, M. Van Montagu, and P. Zambryski, Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens, Nature, 318, 624–629 (1985).

    Article  Google Scholar 

  • Stadler, E. and H. R. Buser, Defense chemicals in leaf surface wax synergistically stimulate oviposition by a phytophagous insect, Experientia, 40, 1157–1159 (1984).

    Article  Google Scholar 

  • Sunnerheim, K., R. T. Palo, O. Theander, and P. Knutsson, Chemical defense in birch. Platyphylloside: A phenol from Betula pendula inhibiting digestibility, J. Chem. Ecol., 14, 549–560 (1988).

    Article  CAS  Google Scholar 

  • Todd, G. W., A. Getchum, and D. C. Cress, Resistance in barley to greenbug, Schizaphis graminum L. Toxicity of the phenolic and flavonoid compounds and related substances, Ann. Entomol. Soc. Am., 64, 718–722 (1971).

    CAS  Google Scholar 

  • Toro G. I. R., G. R. Leather, and F. A. Einhellig, Effects of three phenolic compounds on Lemna gibba G3, J. Chem. Ecol., 14, 845–853 (1988).

    Article  CAS  Google Scholar 

  • Umezawa, T., L. B. Davin, and N. G. Lewis, Formation of the lignan, (-)-secoisolariciresinol, by cell free extracts of Forsythia intermedia, Biochem. Biophys. Res. Commun., 171, 1008–1014 (1990a).

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, T., L. B. Davin, E. Yamamoto, D. G. I. Kingston, and N. G. Lewis, Lignan biosynthesis in Forsythia species, Chem. Commun., 20, 1405–1408 (1990b).

    Google Scholar 

  • United States Department of Energy, Lignin Research: Needs and Opportunities, U.S. Dept. Energy, Washington, DC. 1988.

    Google Scholar 

  • Went, F. W., Plants and the chemical environment, in Chemical Ecology (E. Sondheimer and J. B. Simeone, eds.), 71–82, Academic Press, New York, 1970.

    Google Scholar 

  • Weidenhamer, J. D., G. B. Williamson, N. H. Fischer, and N. Tanrisever, Selective phytotoxic effects of hydrocinnamic acid, Abstracts, Phytochemical Society of North America, Annual Meeting, 1988.

    Google Scholar 

  • Weinges, K. and R. Spänig, Lignans and cyclolignans, in Oxidative Coupling of Phenols (W. I. Taylor and A. R. Battersby, eds.), Marcel Dekker, Inc., New York, 1967.

    Google Scholar 

  • Went, F. W., Plants and the chemical environment, in Chemical Ecology (E. Sondheimer and J. B. Simeone, eds.), 71–82, Academic Press, New York, 1970.

    Google Scholar 

  • Whiting, D. A., Lignans and neolignans, Nat. Prod. Rep., 2, 191–211 (1985).

    Article  CAS  Google Scholar 

  • Whitman, D. W., Grasshopper chemical communication, in Biology of Grasshoppers (R. F. Chapman and A. Joern, eds.), 357–391, Wiley, New York, 1990.

    Google Scholar 

  • Yalpani, N., J. Leon, M. A. Lawton, and I. Raskin, Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco, Plant Physiol., 103, 315–321 (1993).

    PubMed  CAS  Google Scholar 

  • Yates, S. G., Increased concentration of myristicin and 6-me-thoxymellein in carrot root upon irradiation with UV light, in Allelochemicals: Role in Agriculture and Forestry (G. R. Waller, ed.), ACS Symposium Series 330, 295–299, American Chemical Society, Washington, DC, 1987.

    Chapter  Google Scholar 

  • Zenk, M. H., Pathways of salicyl alcohol and salicin formation in Salix purpurea L., Phytochemistry, 6, 245–252 (1967).

    Article  Google Scholar 

  • Zenk, M. H., Recent work on cinnamoyl-CoA derivatives, in Biochemistry of Plant Phenolics (T. Swain, J. B. Harborne and C. F. van Sumere eds.), Recent Advances in Phytochemistry Vol. 12, 139–176, Plenum Press, New York, 1979.

    Chapter  Google Scholar 

  • Zinsmeister, H. D. and R. Mues, Moose als Reservoir bemerkenwerter sekundärer Inhaltsstoffe, GIT Fachzeitschr. Laboratorium, 31, 499–512 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seigler, D.S. (1998). Phenylpropanoids. In: Plant Secondary Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4913-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4913-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7228-8

  • Online ISBN: 978-1-4615-4913-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics