Skip to main content
Log in

Identification and expression analysis of grape LRK10L-2 genes during grape fruit development

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

LRK10L-2 is known to be related to the plant disease response, little information is available about the relationship of LRK10L-2 and fruit ripening. The protein physicochemical properties, conserved domains, gene structures, subcellular localization, expression patterns during grape fruit development and promoter activity of the members of grape LRK10L-2 gene family were explored in this study. A total of 109 LRK10L-2 family gene members were identified, and mainly distributed on chromosome 16. Almost all of them were located in the plasma membrane. Most of the LRK10L-2 genes contain four or five motifs, ranging from 0 to 5 introns and have the cis-acting elements related to hormones in their promoter regions. There were 20 pairs of tandem duplicates and 293 pairs of segmental duplication in LRK10L-2 family genes. It was proved that the expression of LRK10L-2 gene varied at the different fruit development stages of 'Kyoho' and its early-ripening bud mutant, ‘Fengzao’. The subcellular localization of VIT_16s0098g00160 and VIT_16s0098g00400 were in the plasma membrane, and had a significant enrichment of the GUS signal in N.benthamiana leaves for the promoter. The results lay a solid basis for the further functional researches of the LRK10L-2 genes for grape fruit ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alferez F, De Carvalho DU, Boakye D (2021) Interplay between abscisic acid and gibberellins, as related to ethylene and sugars, in regulating maturation of non-climacteric fruit. Int J Mol Sci 22:669

    Article  CAS  PubMed Central  Google Scholar 

  • An L, Ma J, Wang H, Li F, Qin D, Wu J, Zhu G, Zhang J, Yuan Y, Zhou L (2018) NMR-based global metabolomics approach to decipher the metabolic effects of three plant growth regulators on strawberry maturation. Food Chem 269:559–566

    Article  CAS  PubMed  Google Scholar 

  • Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192

    Article  CAS  PubMed  Google Scholar 

  • Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y (2004) ‘Arabidopsis’ kinome: after the casting. Funct Integr Genomics 4:163–187

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  Google Scholar 

  • Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:100–110

    Article  Google Scholar 

  • Dardick C, Chen J, Richter T, Ouyang S, Ronald P (2007) The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol 143:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dardick C, Schwessinger B, Ronald P (2012) Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 15:358–366

    Article  CAS  PubMed  Google Scholar 

  • Deyoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1–16

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Sherif S, Qubbaj T, Sullivan AJ, Jayasankar S (2016) Stimulated auxin levels enhance plum fruit ripening, but limit shelf-life characteristics. Postharvest Biol Technol 112:215–223

    Article  CAS  Google Scholar 

  • El-Sharkawy I, Sherif S, Abdulla M, Jayasankar S (2017) Plum fruit development occurs via gibberellin–sensitive and–insensitive DELLA repressors. PLoS One 12:e0169440

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrandino A, Lovisolo C (2014) Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ Exp Bot 103:138–147

    Article  CAS  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    Article  CAS  PubMed  Google Scholar 

  • French E, Iyer-Pascuzzi AS (2018) A role for the gibberellin pathway in biochar-mediated growth promotion. Sci Rep 8(1), 5389

    Article  Google Scholar 

  • Gu T, Jia S, Huang X, Wang L, Fu W, Huo G, Gan L, Ding J, Li Y (2019) Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 250:145–162

    Article  CAS  PubMed  Google Scholar 

  • Guo D-L, Zhang G-H (2015) A new early-ripening grape cultivar—‘Fengzao.’ Acta Hortic 1082:153–156

    Google Scholar 

  • Guo DL, Xi FF, Yu YH, Zhang XY, Zhang GH, Zhong GY (2016a) Comparative RNA-Seq profiling of berry development between table grape ‘Kyoho’and its early-ripening mutant’Fengzao’ [J]. BMC Genomics 17(1):795

    Article  CAS  Google Scholar 

  • Guo DL, Yu YH, Xi FF, Shi YY, Zhang GH (2016b) Histological and molecular characterization of grape early ripening bud mutant. Int J Genom 2016:5620106

    Google Scholar 

  • Guo DL, Li Q, Lv WQ et al (2018) MicroRNA profiling analysis of developing berries for ‘Kyoho’and its early-ripening mutant during berry ripening. BMC Plant Biol 18(1):285

    Google Scholar 

  • Guo DL, Zhao HL, Li Q, Zhang GH, Jiang JF, Liu CH, Yu YH (2019a) Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Hortic Res 6(1):13

    Article  CAS  Google Scholar 

  • Guo D-L, Zhao H-L, Zhang G-H, Yu Y-H (2019b) Transmission of early ripening trait related loci in grapevines from backbone cultivar Pearl of Csaba to its descendants. Sci Hortic 244:151–156

    Article  CAS  Google Scholar 

  • Hou BZ, Xu C, Shen YY (2018) A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. J Exp Bot 69:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Jia HF, Jiu ST, Zhang C, Wang C, Tariq P, Liu ZJ, Wang BJ, Cui LW, Fang JG (2016) Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnol J 14:2045–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Xie Z, Wang C, Shangguan L, Qian N, Cui M, Liu Z, Zheng T, Wang M, Fang J (2017a) Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape. Funct Integr Genomics 17:441–457

    Article  CAS  PubMed  Google Scholar 

  • Jia M, Du P, Ding N, Zhang Q, Xing S, Wei L, Zhao Y, Mao W, Li J, Li B (2017b) Two FERONIA-like receptor kinases regulate apple fruit ripening by modulating ethylene production. Front Plant Sci 8:1406

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Joyce DC, Macnish AJ (2000) Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. J Plant Growth Regul 19:106–111

    Article  CAS  PubMed  Google Scholar 

  • Kai W, Fu Y, Wang J, Liang B, Li Q, Leng P (2019) Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.). Sci Rep 9:16943

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3:RESEARCH0008

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehti-Shiu MD, Shiu SH (2012) Diversity, classification and function of the plant protein kinase superfamily. Philos Trans Royal Soc B-Biol Sci 367:2619–2639

    Article  CAS  Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng P, Yuan B, Guo YD (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65:4577–4588

    Article  CAS  PubMed  Google Scholar 

  • Li J, Tax FE (2013) Receptor-like kinases: key regulators of plant development and defense. J Integr Plant Biol 55:1184–1187

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wu H, Qi Q, Li H, Li Z, Chen S, Ding Q, Wang Q, Yan Z, Gai Y (2019) Gibberellins play a role in regulating tomato fruit ripening. Plant Cell Physiol 60:1619–1629

    Article  CAS  PubMed  Google Scholar 

  • Liang XX, Zhou JM (2018) Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling. Annu Rev Plant Biol 69(69):267–299

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Yang SH, Shin KH, Lee SC, Kim SH (2015) The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep 34:447–455

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Chen NN, Grant JN, Cheng ZM, Stewart CN, Hewezi T (2015) Soybean kinome: functional classification and gene expression patterns. J Exp Bot 66:1919–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Dai SJ, Ren J, Zhang CX, Ding Y, Li Z, Sun YF, Ji K, Wang YP, Li Q, Chen P, Duan CR, Wang Y, Leng P (2014) The role of ABA in the maturation and postharvest life of a nonclimacteric sweet cherry fruit. J Plant Growth Regul 33:373–383

    Article  CAS  Google Scholar 

  • Mcatee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng D, He M, Bai Y, Xu H, Dandekar AM, Fei Z, Cheng L (2018) Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica). New Phytol 217:641–656

    Article  CAS  PubMed  Google Scholar 

  • Niu EL, Cai CP, Zheng YJ, Shang XG, Fang L, Guo WZ (2016) Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development. Mol Genet Genom 291:1137–1154

    Article  CAS  Google Scholar 

  • Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Marsoem SN, Ko JH, Jin HO, Funada R (2012) Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann Bot 110:887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelagio-Flores R, Munoz-Parra E, Barrera-Ortiz S, Ortiz-Castro R, Saenz-Mata J, Ortega-Amaro MA, Jimenez-Bremont JF, Lopez-Bucio J (2020) The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses. Planta 251:2

    Article  CAS  Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, Mcsteen P (2011) vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilati S, Bagagli G, Sonego P, Moretto M, Brazzale D, Castorina G, Simoni L, Tonelli C, Guella G, Engelen K, Galbiati M, Moser C (2017) Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Front Plant Sci 8:1093

    Article  Google Scholar 

  • Pu CX, Han YF, Zhu S, Song FY, Zhao Y, Wang CY, Zhang YC, Yang Q, Wang J, Bu SL, Sun LJ, Zhang SW, Zhang SQ, Sun DY, Sun Y (2017) The rice receptor-like kinases DWARF AND RUNTISH SPIKELET1 and 2 repress cell death and affect sugar utilization during reproductive development. Plant Cell 29:70–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu XY, Zhao Z, Tian ZX (2017) ERECTA regulates cell elongation by activating auxin biosynthesis in Arabidopsis thaliana. Front Plant Sci 8:1688

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajaraman J, Douchkov D, Hensel G, Stefanato FL, Gordon A, Ereful N, Caldararu OF, Petrescu AJ, Kumlehn J, Boyd LA, Schweizer P (2016) An LRR/Malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat. Front Plant Sci 7:1836

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Handa AK (2005) Hormonal regulation of tomato fruit development: a molecular perspective. J Plant Growth Regul 24:67–82

    Article  CAS  Google Scholar 

  • Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80:365–388

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zafian P, Choudhary M, Lawton M (1996) The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc Natl Acad Sci 93:2598–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Tang HB, Debarry JD, Tan X, Li JP, Wang XY, Lee TH, Jin HZ, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Guo SG, Tian SW, Zhang J, Ren Y, Sun HH, Gong GY, Zhang HY, Xu Y (2017) Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution. Plos one 12:e0179944

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver RJ (1958) Effect of gibberellic acid on fruit set and berry enlargement in seedless grapes of Vitis vinifera. Nature 181:851–852

    Article  CAS  Google Scholar 

  • Wei KF, Wang YM, Xie DX (2014) Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol Breeding 33:155–172

    Article  CAS  Google Scholar 

  • Wierzba MP, Tax FE (2013) Notes from the underground: receptor-like kinases in Arabidopsis root development. J Integr Plant Biol 55:1224–1237

    Article  CAS  PubMed  Google Scholar 

  • Xi FF, Guo LL, Yu YH, Wang Y, Li Q, Zhao HL, Guo DL (2017) Comparison of reactive oxygen species metabolism during grape berry development between ‘Kyoho’and its early ripening bud mutant ‘Fengzao.’ Plant Physiol Biochem 118:634–642

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Yang Y, Zheng H, Han X, Jin H, Xiong Z, Qian W, Xia L, Ji X, Li G, Wang D, Zhang K (2021) Efficient expression and function of a receptor-like kinase in wheat powdery mildew defence require an intron-located MYB binding site. Plant Biotechnol J 19:897–909

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Labbe J, Muchero W, Yang X, Jawdy SS, Kennedy M, Johnson J, Sreedasyam A, Schmutz J, Tuskan GA, Chen JG (2016) Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genomics 17:699

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, Mcdermott J, Samudrala R, Wang J, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue P, Lu Q, Liu Z, Lv T, Li X, Bu H, Liu W, Xu Y, Yuan H, Wang A (2020) Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytol 226:1781–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Gao YL, Zhang ZY, Chen TZ, Guo WZ, Zhang TZ (2013) A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC Plant Biol 13:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Li S, Deng Z, Wang X, Chen T, Zhang J, Chen S, Ling H, Zhang A, Wang D, Zhang X (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J 52:420–434

    Article  CAS  PubMed  Google Scholar 

  • Zhu KK, Wang XL, Liu JY, Tang J, Cheng QK, Chen JG, Cheng ZM (2018) The grapevine kinome: annotation, classification and expression patterns in developmental processes and stress responses. Hortic Res 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX (2014) The Arabidopsis kinome: phylogeny and evolutionary insights into functional diversification. BMC Genom 15:548

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China (NSFC: U1904113), National Key Research and Development Program of China (2018YFD1000105), and Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN021), Program for Science & Technology Innovation Talents in Universities of Henan Province (21HASTIT035).

Author information

Authors and Affiliations

Authors

Contributions

JPM and DLG conceived and designed this study; JPM performed the experiments and wrote this paper; DLG revised the manuscript; XRY, TLW, HNL and P.M.S. gave advices for this study; SDY and HYJ provided analysis tools; all the authors read and approved the final manuscript.

Corresponding author

Correspondence to Da-Long Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, JP., Yin, XR., Wei, TL. et al. Identification and expression analysis of grape LRK10L-2 genes during grape fruit development. Plant Biotechnol Rep 16, 57–70 (2022). https://doi.org/10.1007/s11816-021-00738-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00738-6

Keywords

Navigation