Skip to main content
Log in

Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Lectin receptor-like kinases (LecRLKs) are class of membrane proteins found in higher plants that are involved in diverse functions ranging from plant growth and development to stress tolerance. The basic structure of LecRLK protein comprises of a lectin and a kinase domain, which are interconnected by transmembrane region. Here we have identified LecRLKs from Arabidopsis and rice and studied these proteins on the basis of their expression profile and phylogenies. We were able to identify 32 G-type, 42 L-type and 1 C-type LecRLKs from Arabidopsis and 72 L-type, 100 G-type and 1 C-type LecRLKs from rice on the basis of their annotation and presence of lectin as well kinase domains. The whole family is rather intron-less. We have sub-grouped the gene family on the basis of their phylogram. Although on the basis of sequence the members of each group are closely associated but their functions vary to a great extent. The interacting partners and coexpression data of the genes revealed the importance of gene family in physiology and stress related responses. An in-depth analysis on gene-expression suggested clear demarcation in roles assigned to each gene. To gain additional knowledge about the LecRLK gene family, we searched for previously unreported motifs and checked their importance structurally on the basis of homology modelling. The analysis revealed that the gene family has important roles in diverse functions in plants, both in the developmental stages and in stress conditions. This study thus opens the possibility to explore the roles that LecRLKs might play in life of a plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babbitt CC, Haygood R, Wray GA (2007) When two is better than one. Cell 131(2):225–227

    Google Scholar 

  • Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6:287–292

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure G (2011) The Nicotiana attenuata Lectin Receptor Kinase 1 is involved in the perception of insect feeding. Plant Signal Behav 6:1–4

    Article  Google Scholar 

  • Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60:4383–4396

    Article  PubMed  CAS  Google Scholar 

  • Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7:481–488

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  PubMed  CAS  Google Scholar 

  • Clauss MJ, Mitchell-Olds T (2003) Population genetics of tandem trypsin inhibitor genes in Arabidopsis species with contrasting ecology and life history. Mol Ecol 12:1287–1299

    Article  PubMed  CAS  Google Scholar 

  • Deng K, Wang Q, Zeng J, Guo X, Zhao X, Tang D, Liu X (2009) A lectin receptor kinase positively regulates aba response during seed germination and is involved in salt and osmotic stress response. J. Plant Biol 52:493–500

    Article  CAS  Google Scholar 

  • Desclos-Theveniau M, Arnaud D, Huang TY, Lin GJC, Chen WY et al (2012) The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 8:e1002513. doi:10.1371/journal.ppat.1002513

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA et al (2002) TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics 2:239–253

    Article  PubMed  CAS  Google Scholar 

  • Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata lectin receptor kinase1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. The Plant Cell 23:3512–3532

    Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hervé C, Serres J., Dabos P, Canut H, Barre A, Roug′e P, Lescure B (1999) Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol 39: 671–682

    Google Scholar 

  • Herve C, Dabos P, Galaud JP, Rouge P, Lescure B (1996) Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J Mol Biol 258:778–788

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2:320–326

    Article  PubMed  CAS  Google Scholar 

  • Hittinger C, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucl Acids Res 35(2):W585–W587

    Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinf 2008:1–5

  • Jain M, Khurana P, Tyagi AK, Khurana JP (2008) Genome wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics 8:69–78

    Article  PubMed  CAS  Google Scholar 

  • Joshi A, Hung DQ, Vaid N, Tuteja N (2010) Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 27:133–150

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta. doi:10.1007/s00425-008-0797-y

    PubMed  Google Scholar 

  • Kohorn BD, Lane S, Smith T A (1992) An Arabidopsis serine/threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein. Proc Natl Acad Sci USA 89(22):10989–10992

    Google Scholar 

  • Lepiniec L, Keryer E, Philippe H, Gadal P, Crétin C (1993) Sorghum phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution. Plant Mol Biol 21:487–502

    Article  PubMed  CAS  Google Scholar 

  • Loris R (2002) Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572:198–208

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  PubMed  CAS  Google Scholar 

  • Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007) Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA 104:12211–12216

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Gochicoa MT, Camut S, Timmers ACJ, Niebel A, Herve C, Boutet E, Bono JJ, Imberty A, Cullimore JV (2003) Characterization of four lectin-like receptor kinases expressed in roots of medicago truncatula. structure, location, regulation of expression, and potential role in the symbiosis with sinorhizobium meliloti. Plant Physiol 133:1893–1910

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi NM, Yoshida YK, Sumizono ST, Tazaki TK (2002) A receptor-like protein kinase with a lectin-like domain from lombardy poplar: gene expression in response to wounding and characterization of phosphorylation activity. Mol Gen Genomics 267:506–514

    Article  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Ohtake Y, Takahashi T, Komeda Y (2000) Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant Cell Physiol 41:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Google Scholar 

  • Poole R (2007) The TAIR database. Methods Mol Biol 406:179–212

    PubMed  CAS  Google Scholar 

  • Riou C, Herve C, Pacquit V, Dabos P, Lescure B (2002) Expression of an Arabidopsis lectin kinase receptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids. Plant Physiol Biochem 40:431–438

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sasabe M, Naito K, Suenaga H, Ikeda T, Toyoda K, Inagaki Y, Shiraishi T, Ichinose Y (2007) Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Seq 18:152–159

    PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 1131: RE22. (doi:10.1126/stke.2001.113.re22)

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/pelle gene familyand receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, Desclos-Theveniau M, Chu PW, Schulze B, Chinchilla D, Boller T, Zimmerli L (2012) The lectin receptor kinase-vi.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24(3):1256–1270

    Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signalling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Google Scholar 

  • Tordai H, Banyai L, Patthy L (1999) The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461:63–67

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Patel A, Mathieu M, Kim SY, Xu D, Stacey G (2008) A lectin receptor-like kinase is required for pollen development in Arabidopsis. Plant Mol Biol 67:469–482

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Jawdy S, Tschaplinski TJ, Tuskan GA (2009) Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus. Genomics 93:473–480

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins: Struct Func Bioinf 64:643–651

    Article  CAS  Google Scholar 

  • Zou M, Guo B, He S (2011) The roles and evolutionary patterns of intronless genes in deuterostomes. Comp Funct Genomics 2011:1–8

  • Zuo K, Zhao J, Wang J, Sun X, Tan K (2004) Molecular cloning and characterization of GhLecrk, a novel kinase gene with lectin-like domain from Gossypium hirsutum. DNA Seq 15:58–65

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr..Renu Tuteja (ICGEB, New Delhi, India) and Dr. Dinesh Gupta for helpful comments/corrections. Work on signal transduction and plant stress signaling in NT’s laboratory is partially supported by Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaid, N., Pandey, P.K. & Tuteja, N. Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80, 365–388 (2012). https://doi.org/10.1007/s11103-012-9952-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9952-8

Keywords

Navigation