Skip to main content
Log in

Identification and expression profile analysis of the protein kinase gene superfamily in maize development

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Eukaryotic protein kinases (ePKs) evolved as a family of highly dynamic molecular switches that serve to orchestrate the activity of almost all cellular processes. Some of the functionally characterized ePKs from plants have been found to be components of signaling networks, such as those for the perception of biotic agents, light quality and quantity, plant hormones, and various adverse environmental conditions. To date, only a tiny fraction of plant ePKs have been functionally identified, and even fewer have been identified in maize [Zea mays (Zm)]. In this study, we have identified 1,241 PK-encoding genes in the maize genome. Phylogenetic analyses identified eight gene groups with considerable conservation among groups, and each group could be further divided into multiple families and/or subfamilies. Similar intron/exon structural patterns were observed in the same families/subfamilies, strongly supporting their close evolutionary relationship. Chromosome distribution and genetic analysis revealed that tandem duplications and segmental/whole-genome duplications might represent two of the major mechanisms contributing to the expansion of the PK superfamily in maize. The dynamic expression patterns of ZmPK genes across the 60 different developmental stages of 11 organs showed that some members of this superfamily exhibit tissue-specific expression, whereas others are more ubiquitously expressed, indicative of their important roles in performing diverse developmental and physiological functions during the maize life cycle. Furthermore, RNA-sequence-based gene expression profiling of PKs along a leaf developmental gradient and in mature bundle sheath and mesophyll cells indicated that ZmPK genes are involved in various physiological processes, such as cell-fate decisions, photosynthetic differentiation, and regulation of stomatal development. Our results provide new insights into the function and evolution of maize PKs and will be useful in studies aimed at revealing the global regulatory network of maize development, thereby contributing to the maize molecular breeding with enhanced quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu CY, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becraft PW, Kang SH, Suh SG (2001) The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response. Plant Physiol 127:486–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Bush SM, Krysan PJ (2007) Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot 58:2181–2191

    Article  CAS  PubMed  Google Scholar 

  • Cartwright HN, Humphries JA, Smith LG (2009) PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize. Science 323:649–651

    Article  CAS  PubMed  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893

    Article  CAS  PubMed  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  PubMed  Google Scholar 

  • Dardick C, Chen J, Richter T, Ouyang S, Ronald P (2007) The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol 143:579–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Estruch JJ, Kadwell S, Merlin E, Crossland L (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci USA 91:8837–8841

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  • Hardin SC, Wolniak SM (1998) Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen- and stress-activated protein kinase kinases. Planta 206:577–584

    Article  CAS  PubMed  Google Scholar 

  • Hardin SC, Wolniak SM (2001) Expression of the mitogen-activated protein kinase kinase ZmMEK1 in the primary root of maize. Planta 213:916–926

    Article  CAS  PubMed  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang JZ, Huber SC (2001) Phosphorylation of synthetic peptides by a CDPK and plant SNF1-related protein kinase. Influence of proline and basic amino acid residues at selected positions. Plant Cell Physiol 42:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keates RA (1973) Cyclic nucleotide-independent protein kinase from pea shoots. Biochem Biophys Res Commun 54:655–661

    Article  CAS  PubMed  Google Scholar 

  • Kozik A, Kochetkova E, Michelmore R (2002) GenomePixelizer—a visualization program for comparative genomics within and between species. Bioinformatics 18:335–336

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Lawton MA, Yamamoto RT, Hanks SK, Lamb CJ (1989) Molecular cloning of plant transcripts encoding protein kinase homologs. Pro Natl Acad Sci USA 86:3140–3144

    Article  CAS  Google Scholar 

  • Lehti-Shiu MD, Shiu SH (2012) Diversity, classification and function of the plant protein kinase superfamily. Philos Tans R Soc Lond B Bio Sci 367:2619–2639

    Article  CAS  Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Wurtzel ET (1998) The ltk gene family encodes novel receptor-like kinases with temporal expression in developing maize endosperm. Plant Mol Biol 37:749–761

    Article  CAS  PubMed  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S (2007) barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144:1000–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamichi N, Murakami-Kojima M, Sato E, Kishi Y, Yamashino T, Mizuno T (2002) Compilation and characterization of a novel WNK family of protein kinases in Arabiodpsis thaliana with reference to circadian rhythms. Biosci Biotechnol Biochem 66:2429–2436

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y, Liu Y, Sun L, Li D (2012) ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta 235:661–676

    Article  CAS  PubMed  Google Scholar 

  • Ralph RK, McCombs PJ, Tener G, Wojcik SJ (1972) Evidence for modification of protein phosphorylation by cytokinins. Biochem J 130:901–911

    CAS  PubMed  Google Scholar 

  • Reams AB, Neidle EL (2004) Selection for gene clustering by tandem duplication. Annu Rev Microbiol 58:119–142

    Article  CAS  PubMed  Google Scholar 

  • Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2:e115

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Romeis T, Piedras P, Jones JD (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12:803–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed Central  PubMed  Google Scholar 

  • Soderlund C, Bomhoff M, Nelson WM (2011) SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39:e68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26:320–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA (1999) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci USA 96:4180–4185

    Article  CAS  PubMed  Google Scholar 

  • Thilmony R, Guttman M, Thomson JG, Blechl AE (2009) The LP2 leucine-rich repeat receptor kinase gene promoter directs organ-specific, light-responsive expression in transgenic rice. Plant Biotechnol J 7:867–882

    Article  CAS  PubMed  Google Scholar 

  • Trewavas A (1973) The Phosphorylation of Ribosomal Protein in Lemna minor. Plant Physiol 51:760–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker JC, Zhang R (1990) Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345:743–746

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Liu K, Liao H, Zhuang C, Ma H, Yan X (2008) The plant WNK gene family and regulation of flowering time in Arabidopsis. Plant Biol 10:548–562

    Article  CAS  PubMed  Google Scholar 

  • Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012a) Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. Mol BioSyst 8:1940–1949

    Article  CAS  PubMed  Google Scholar 

  • Wei KF, Chen J, Wang YM, Chen YH, Chen SX, Lin YN, Pan S, Zhong XJ, Xie DX (2012b) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012c) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed Central  PubMed  Google Scholar 

  • Ying S, Zhang DF, Li HY, Liu YH, Shi YS, Song YC, Wang TY, Li Y (2011) Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Rep 30:1683–1699

    Article  CAS  PubMed  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Facette M, Humphries JA, Shen Z, Park Y, Sutimantanapi D, Sylvester AW, Briggs SP, Smith LG (2012) Identification of PAN2 by quantitative proteomics as a leucine-rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize. Plant Cell 24:4577–4589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all researchers who submitted the microarray data to the public expression databases for free access. We thank Yanhui Chen, Yina Lin, Xiaojun Zhong, Si Pan and Xiaoyao Liu in our laboratory for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifa Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2736 kb)

Supplementary material 2 (PDF 78 kb)

Supplementary material 3 (PDF 237 kb)

Supplementary material 4 (PDF 84 kb)

Supplementary material 5 (PDF 4005 kb)

Supplementary material 6 (PDF 669 kb)

11032_2013_9941_MOESM7_ESM.tif

Supplemental Figure S1 Phylogenetic tree of PKs from Arabidopsis, rice and maize. The distance scale is under the figure, and branch lengths are proportional to genetic distance. The Arabidopsis and rice gene names follow those of TAIR and TIGR databases. Sequences in the same clades as known kinase families were classified as such. The red arrowhead indicates the outgroup. The classification for these kinases is shown on the right. Each phylogenetic group is color-coded according to the color key on the lower right. (TIFF 27587 kb)

11032_2013_9941_MOESM8_ESM.tif

Supplemental Figure S2 The map of the intron-exon configuration of ZmPK genes ordered by subfamily. Introns and exons were drawn to scale with the full encoding regions of their respective genes. Exons are depicted as green boxes and introns as connecting thin lines. Non-translated regions, when supported by full-length cDNA sequences, are shown in blue boxes. (TIFF 15270 kb)

Supplementary material 9 (PDF 414 kb)

Supplementary material 10 (PDF 403 kb)

Supplementary material 11 (PDF 709 kb)

Supplementary material 12 (PDF 712 kb)

Supplementary material 13 (PDF 607 kb)

Supplementary material 14 (PDF 446 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, K., Wang, Y. & Xie, D. Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol Breeding 33, 155–172 (2014). https://doi.org/10.1007/s11032-013-9941-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9941-x

Keywords

Navigation