Skip to main content

Advertisement

Log in

A combined cycle power plant integrated with a desalination system: Energy, exergy, economic and environmental (4E) analysis and multi-objective optimization

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A cogeneration production system of power and freshwater was studied from the perspective of energy, exergy, economic, and environmental (4E). The main components of this system include a Brayton cycle (BC), dual-pressure heat recovery steam generator (HRSG), steam turbine (ST), and multi-effect evaporation with thermal vapor compression (MEE-TVC). The system was optimized with a multi-objective genetic algorithm using MATLAB software and by considering the performance of two objective functions: the total annual cost (TAC) to minimize and the thermal efficiency to maximize. The results showed that, with increasing gas turbine inlet temperature, thermal efficiency, exergy efficiency, and emission of pollutants improved, but the gain output ratio (GOR) decreased. GOR of desalination system, exergy efficiency of combined cycle power plant (CCPP), and emission of pollutants improved by increasing the compressor pressure ratio. In investigating the number of effects in desalination unit, by increasing this parameter the production of freshwater, GOR and exergy efficiency of MEE-TVC was increased. By adding a duct burner to the cogeneration system, the thermal efficiency, the exergy efficiency, and the net power output were reduced by 0.67, 3.9, and 5.91%, respectively. But the freshwater production, GOR, and TAC was improved about 7.97, 9.69, and 1.265%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Höök and X. Tang, Energy Policy, 52, 797 (2013).

    Article  CAS  Google Scholar 

  2. J. Chen, W. Xu, F. Zhang, H. Zuo, E. Jiaqiang, K. Wei and Y. Fan, Energy Convers. Manage., 198, 111927 (2019).

    Article  CAS  Google Scholar 

  3. H. Zuo, G. Liu, E. Jiaqiang, W. Zuo, K. Wei, W. Hu and D. Zhong, Sol. Energy, 183, 40 (2019).

    Article  Google Scholar 

  4. H. Zuo, J. Tan, K. Wei, Z. Huang, D. Zhong and F. Xie, J. Renewable Energy, 168, 1308 (2021).

    Article  CAS  Google Scholar 

  5. J. Wang, L. Feng, X. Tang, Y. Bentley and M. Höök, Futures, 86, 58 (2017).

    Article  Google Scholar 

  6. A. Moran, P. J. Mago and L. M. Chamra, Int. J. Energy Res., 32(9), 808 (2008).

    Article  Google Scholar 

  7. S. S. Henry, Encyclopedia of climate and weather, Oxford University Press, USA (1996).

    Google Scholar 

  8. S. A. Makkeh, A. Ahmadi, F. Esmaeilion, M. A. Ehyaei, J. Cleaner Prod., 273, 123122 (2020).

    Article  CAS  Google Scholar 

  9. D. Coppitters, F. Contino, A. El-Baz, P. Breuhaus and W. De Paepe, J. Renewable Energy, 150, 1089 (2020).

    Article  Google Scholar 

  10. M. A. El-Nashar, Desalination, 134, 7 (2001).

    Article  CAS  Google Scholar 

  11. H. T. El-Dessouky and H. M. Ettouney, Fundamentals of salt water desalination, Elsevier (2002).

  12. M. Al-Shammiri and M. Safar, Desalination, 126, 45 (1999).

    Article  CAS  Google Scholar 

  13. S. E. Shakib, S. R. Hosseini, M. Amidpour and C. Aghanajafi, Desalination, 286, 225 (2012).

    Article  CAS  Google Scholar 

  14. A. Esmaieli, P. Keshavarz, S. E. Shakib and M. Amidpour, Int. J. Energy Res., 37(12), 1440 (2013).

    Article  Google Scholar 

  15. M. V. Petrovic and M. S. Mohammed, Int. J. Therm. Sci., 19(2), 447 (2015).

    Article  Google Scholar 

  16. A. Mohammadi, M. Ashouri, M. H. Ahmadi, M. Bidi, M. Sadeghzadeh and T. Ming, Energy Sci. Eng., 6(5), 506 (2018).

    Article  Google Scholar 

  17. P. Ahmadi, N. Enadi, H. Barzegar Avval and I. Dincer, Int. J. Exergy., 11(1), 1 (2012).

    Article  Google Scholar 

  18. S. Mohtaram, H. G. Sun, J. Lin, W. Chen and Y. Sun, Renewable Sustainable Energy Rev., 128, 109898 (2020).

    Article  CAS  Google Scholar 

  19. M. R. M. Yazdi, F. Ommi, M. A. Ehyaeic and M. A. Rosen, Energy Convers. Manage., 216, 112944 (2020).

    Article  Google Scholar 

  20. I. S. Al-Mutaz and I. Wazeer, Desalination, 351, 9 (2014).

    Article  CAS  Google Scholar 

  21. M. Salimi and M. Amidpour, Energy Convers. Manage., 138, 299 (2017).

    Article  Google Scholar 

  22. M. Salimi, H. Akbarpour Reyhani and M. Amidpour, Desalination, 427, 51 (2018).

    Article  CAS  Google Scholar 

  23. P. Guo, T. Li, Y. Wang and J. Li, Desalination, 500, 114890 (2021).

    Article  CAS  Google Scholar 

  24. P. Ahmadi, S. Khanmohammadi, F. Musharavati and M. Afrand, Appl. Therm. Eng., 176, 115414 (2020).

    Article  Google Scholar 

  25. A. Alzahrani, J. Orfi and Z. Alsuhaibani, Desalin. Water Treat., 55(12), 3350 (2015).

    Article  CAS  Google Scholar 

  26. A. Valero, M. A. Lozano, L. Serra, G. Tsatsaronis, J. Pisa, C. Frangopoulos and M. R. von Spakovsky, Energy, 19, 279 (1994).

    Article  Google Scholar 

  27. M. B. Jamnani and A. Kardgar, Energy Sci. Eng., 8(10), 3561 (2020).

    Article  Google Scholar 

  28. P. Ahmadi and I. Dincer, Energy Convers. Manage., 52, 2296 (2011).

    Article  Google Scholar 

  29. P. Ahmadi and I. Dincer, Int. J. Greenhouse Gas Control, 5, 1540 (2011).

    Article  CAS  Google Scholar 

  30. H. Hajabdollahi, P. Ahmadi and I. Dincer, Int. J. Green Energy, 8, 44 (2011).

    Article  CAS  Google Scholar 

  31. F. N. Alasfour, M. A. Darwish and A. O. Bin Amer, Desalination, 174, 39 (2005).

    Article  CAS  Google Scholar 

  32. M. Kim, D. Kim, I. J. Esfahani, S. Lee, M. Kim and C. Yoo, Korean J. Chem. Eng., 34(1), 6 (2017).

    Article  CAS  Google Scholar 

  33. M. Moghimi, M. Emadi, P. Ahmadi and H. Moghadasi, Exp. Therm. Fluid Sci., 141, 515 (2018).

    Google Scholar 

  34. M. Ameri, P. Ahmadi and S. Khanmohammadi, Int. J. Energy Res., 32, 175 (2008).

    Article  CAS  Google Scholar 

  35. M. A. Javadi, S. Hoseinzadeh, M. Khalaji and R. Ghasemiasl, Sādhanā, 44(5), 1 (2019).

    Article  Google Scholar 

  36. A. Lazzaretto and A. Toffolo, Energy, 29, 1139 (2004).

    Article  CAS  Google Scholar 

  37. O. L. Gulder, ASME J. Eng. Gas Turbines Power, 108, 376 (1986).

    Article  CAS  Google Scholar 

  38. N. K. Rizk and H. C. Mongia, ASME J. Eng. Gas Turbines Power, 115, 612 (1993).

    Article  CAS  Google Scholar 

  39. M. M. Ashour, Desalination, 152(1), 191 (2003).

    Article  CAS  Google Scholar 

  40. World weather online, [Online]. Available: https://wwwworldweath-eronline.com/. [Accessed: 05-Apr-2021].

  41. Sea temperature, [Online]. Available: https://seatemperature.info/. [Accessed: 05-Apr-2021].

  42. IRIMO, I.R.OF IRAN Meteorological Organization archives, [Online]. Available: http://irimo.ir/eng/index.php. [Accessed: 18-Jan-2019].

  43. A. A. Bidokhti and M. Ezam, Ocean Sci., 5(1), 1 (2009).

    Article  Google Scholar 

  44. M. Esrafilian and R. Ahmadi, Desalination, 454, 20 (2019).

    Article  CAS  Google Scholar 

  45. Z. T. Lian, K. J. Chua and S. K. Chou, Appl. Energy, 87, 84 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shafiey Dehaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghghi, B., Saleh, A., Hajabdollahi, H. et al. A combined cycle power plant integrated with a desalination system: Energy, exergy, economic and environmental (4E) analysis and multi-objective optimization. Korean J. Chem. Eng. 39, 1688–1708 (2022). https://doi.org/10.1007/s11814-022-1098-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1098-z

Keywords

Navigation