Skip to main content
Log in

Quantitative analysis on microstructure and high temperature fracture mechanism of 2.6vol%TiBw/Ti6Al4V composites with equiaxed microstructure after heat treatment

2.6vol%TiBw/Ti6Al4V 复合材料热处理后微观组织定量分析及高温断裂机理研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, the 2.6vol%TiBw/Ti6Al4V composites with network architecture were fabricated by hot press sintering (HPS) at 1100 °C for 1 h, and the quantitative relationships between phases and heat treatment temperatures were established. The results showed that the volume fraction phases changed linearly with a range of solution temperature (930–1010 °C) and aging temperature (400–600 °C). Moreover, the composites with equiaxed microstructure were obtained due to the static recrystallization after solution treated at 950 °C for 1 h and aging treated at 600 °C for 12 h. The ultimate high temperature tensile strengths were 772, 658, 392 and 182 MPa, and the elongations were 9.1%, 12.5%, 28.6% and 35.3% at 400, 500, 600 and 700 °C, respectively. In addition, fractured morphology analysis indicated the excellent strengthening effect of TiBw at a temperature below 600 °C. However, the strengthening effect was significantly reduced due to the debonding of matrix and TiBw at 700 °C and caused the cracks to propagate along the grain boundary.

摘要

本文通过1100 °C/1 h 真空热压烧结技术制备了2.6vol%TiBw/Ti6Al4V 网状增强钛基复合材料, 并建立了热处理参数与各相百分含量的量化关系。结果表明,在固溶温度930∼1100 °C 和时效温度 400∼600 °C 之间,各相百分含量与固溶、时效温度呈线性变化。并且经过950 °C/1 h 固溶处理与600 °C/ 12 h 时效处理后,由于热处理过程中发生了静态再结晶,钛基复合材料呈现等轴状。对等轴钛基复合 材料进行高温拉伸测试,结果表明,材料高温抗拉强度达到772 MPa(400 °C), 658 MPa(500 °C), 392 MPa(600 °C),182 MPa(700 °C),高温伸长率也分别为9.1%(400 °C), 12.5%(500 °C), 28.6%(600 °C), 35.3%(700 °C)。通过对材料高温断口的分析,发现TiB 晶须在600 °C 温度以下能够起到很好的增强 效果,但是当温度超过700 °C 后,TiB 晶须与基体发生脱粘现象,导致TiB 晶须的增强效果显著降低, 并且使裂纹沿着晶界扩展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BROZEK C, SUN F, VERMAUT P, MILLET Y, LENAIN A, EMBURY D, JACQUES P J, PRIMA F. A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties [J]. Scripta Materialia, 2016, 114: 60–64. DOI: https://doi.org/10.1016/j.scriptamat.2015.11.020.

    Article  Google Scholar 

  2. HUANG L J, GENG L, PENG H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? [J]. Progress in Materials Science, 2015, 71: 93–168. DOI: https://doi.org/10.1016/j.pmatsci.2015.01.002.

    Article  Google Scholar 

  3. HUANG B, YANG Y, LUO H, YUAN M. Effects of the coating system and interfacial region thickness on the thermal residual stresses in SiCf/Ti-6Al-4V composites [J]. Materials & Design, 2009, 30(3): 718–722. DOI: https://doi.org/10.1016/j.matdes.2008.05.013

    Article  Google Scholar 

  4. WANG J, GUO X, QIN J, ZHANG D, LU W. Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions [J]. Materials Science and Engineering A, 2015, 628: 366–373. DOI: https://doi.org/10.1016/j.msea.2015.01.067.

    Article  Google Scholar 

  5. LU H, ZHANG D, GABBITAS B, YANG F, MATTHEWS S. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture [J]. Journal of Alloys and Compounds, 2014, 606: 262–268. DOI: https://doi.org/10.1016/j.jallcom.2014.03.144.

    Article  Google Scholar 

  6. SELVAKUMAR M, CHANDRASEKAR P, MOHANRAJ M, RAVISANKAR B, BALARAJU J N. Role of powder metallurgical processing and TiB reinforcement on mechanical response of Ti-TiB composites [J]. Materials Letters, 2015, 144: 58–61. DOI: https://doi.org/10.1016/j.matlet.2014.12.126.

    Article  Google Scholar 

  7. CHEN W, YANG J, ZHANG W, WANG M, DU D, CUI G. Influence of TiBw volume fraction on microstructure and high-temperature properties of in situ TiBw/Ti6Al4V composites with TiBw columnar reinforced structure fabricated by pre-sintering and canned extrusion [J]. Advanced Powder Technology, 2017, 28(9): 2346–2356. DOI: https://doi.org/10.1016/j.apt.2017.06.016.

    Article  Google Scholar 

  8. LU W J, ZHANG D, ZHANG X N, WU R J, SAKATA T, MORI H. Creep rupture life of in situ synthesized (TiB+TiC)/Ti matrix composites [J]. Scripta Mater, 2001, 44: 2449–2455. DOI: https://doi.org/10.1016/S1359-6462(01)00926-5.

    Article  Google Scholar 

  9. HU H T, HUANG L J, GENG L, SUN J F, TIAN H. High temperature mechanical properties of as-extruded TiBw/Ti60 composites with ellipsoid network architecture [J]. Journal of Alloys and Compounds, 2016, 688: 958–966. DOI: https://doi.org/10.1016/j.jallcom.2016.07.118.

    Article  Google Scholar 

  10. HUANG L J, GENG L, LI A B, YANG F Y, PENG H X. In situ TiBw/Ti6Al4V composites with novel reinforcement archittecture fabricated by reaction hot pressing [J]. Scripta Materialia, 2009, 60: 996–999. DOI: https://doi.org/10.1016/j.scriptamat.2009.02.032.

    Article  Google Scholar 

  11. MORSI K, PATEL V V. Processing and properties of titanium-titanium boride (TiBw) matrix composites—A review [J]. Journal of Materials Science, 2007, 42(6): 2037–2047. DOI: https://doi.org/10.1007/s10853-006-0776-2.

    Article  Google Scholar 

  12. HUANG L J, GENG L, PENG H X, KAVEENDRAN B. High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture [J]. Materials Science and Engineering A, 2012, 534: 688–692. DOI: https://doi.org/10.1016/j.msea.2011.12.028.

    Article  Google Scholar 

  13. WANG B, HUANG L J, GENG L, RONG X D, LIU B X. Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites [J]. Materials & Design, 2015, 85: 679–686. DOI: https://doi.org/10.1016/j.matdes.2015.07.058.

    Article  Google Scholar 

  14. HUANG L J, YANG F Y, HU H T, RONG X D, GENG L, WU L Z. TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure [J]. Materials & Design, 2013, 51: 421–426. DOI: https://doi.org/10.1016/j.matdes.2013.04.048.

    Article  Google Scholar 

  15. HILL D, BANERJEE R, HUBER D, TILEY J, FRASER H L. Formation of equiaxed alpha in TiB reinforced Ti alloy composites [J]. Scripta Materialia, 2005, 52(5): 387–392. DOI: https://doi.org/10.1016/j.scriptamat.2004.10.019.

    Article  Google Scholar 

  16. RASTEGARI H A, ASGARI S, ABBASI S M. Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process [J]. Materials & Design, 2011, 32(10): 5010–5014. DOI: https://doi.org/10.1016/j.matdes.2011.06.009.

    Article  Google Scholar 

  17. ZHANG R, WANG D J, HUANG L J, YUAN S J. Effects of heat treatment on microstructure and high temperature tensile properties of TiBw/TA15 composite billet with network architecture [J]. Materials Science and Engineering A, 2017, 679: 314–322. DOI: https://doi.org/10.1016/j.msea.2016.10.0.

    Article  Google Scholar 

  18. HUANG L J, XU H Y, WANG B, ZHANG Y Z, GENG L. Effects of heat treatment parameters on the microstructure and mechanical properties of in situ TiBw/Ti6Al4V composite with a network architecture [J]. Materials & Design, 2012, 36: 694–698. DOI: https://doi.org/10.1016/j.matdes.2011.12.021.

    Article  Google Scholar 

  19. QI J Q, WANG H W, ZOU C M, WEI Z J. Influence of matrix characteristics on tensile properties of in situ synthesized TiC/TA15 composite [J]. Materials Science and Engineering A, 2012, 553: 59–66. DOI: https://doi.org/10.1016/j.msea.2012.05.092.

    Article  Google Scholar 

  20. ZHANG W, FENG Y, CHEN W, YANG J. Effects of heat treatment on the microstructure and mechanical properties of in situ inhomogeneous TiBw/Ti6Al4V composite fabricated by pre-sintering and canned powder extrusion [J]. Journal of Alloys and Compounds, 2017, 693: 1116–1123. DOI: https://doi.org/10.1016/j.jallcom.2016.09.229.

    Article  Google Scholar 

  21. LI B S, SHANG J L, GUO J J, FU H Z. Formation of TiBw reinforcement in in-situ titanium matrix composites [J]. J Mater Sci, 2004, 39: 1131–1133.

    Article  Google Scholar 

  22. FAN Z, GUO Z X, CANTOR B. The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs [J]. Composites Part A-Applied Science and Manufacturing, 1997, 28(2): 131–140. DOI: https://doi.org/10.1016/S1359-835X(96)00105-4.

    Article  Google Scholar 

  23. HUANG L J, GENG L, WANG B, XU H Y, KAVEENDRAN B. Effects of extrusion and heat treatment on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composite with a network architecture [J]. Composites Part A-Applied Science and Manufacturing, 2012, 43(3): 486–491. DOI: https://doi.org/10.1016/j.compositesa.2011.11.014.

    Article  Google Scholar 

  24. JIAO X, CHEN W, YANG J, ZHANG W, WANG G. Microstructure evolution and high-temperature tensile behavior of the powder extruded 2.5 vol%TiBw/TA15 composites [J]. Materials Science and Engineering A, 2019, 745: 353–359. DOI: https://doi.org/10.1016/j.msea.2018.12.095.

    Article  Google Scholar 

  25. SERGEY Z, GENNADY S S, LEE S. Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation [J]. Philosophical Magazine Letters, 2010, 90(12): 903–914. DOI: https://doi.org/10.1080/09500839.2010.521526.

    Article  Google Scholar 

  26. WANG S C, AINDOW M, STARINK M J. Effect of self-accommodation on α/α boundary populations in pure titanium [J]. Acta Materialia, 2003, 51(9): 2485–2503. DOI: https://doi.org/10.1016/S1359-6454(03)00035-1.

    Article  Google Scholar 

  27. YANG J, WANG G, JIAO X, LI Y, LIU Q. High-temperature deformation behavior of the extruded Ti-22Al-25Nb alloy fabricated by powder metallurgy [J]. Materials Characterization, 2018, 137: 170–179. DOI: https://doi.org/10.1016/j.matchar.2018.01.019.

    Article  Google Scholar 

  28. YANG J, WANG G, JIAO X, LI X, YANG C. Hot deformation behavior and microstructural evolution of Ti-22Al-25Nb-1.0B alloy prepared by elemental powder metallurgy [J]. Journal of Alloys and Compounds, 2017, 695: 1038–1044. DOI: https://doi.org/10.1016/j.jallcom.2016.10.228.

    Article  Google Scholar 

  29. LI S F, KONDOH K, IMAI H, CHEN B, JIA L, UMEDA J, FU Y B. Strengthening behavior of in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion [J]. Materials and Design, 2016, 95: 127–132. DOI: https://doi.org/10.1016/j.matdes.2016.01.092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHANG Wen-cong, YANG Jian-lei, CUI Guo-rong and CHEN Wen-zhen. PAN Jin-qi and ZHANG Wen-cong conducted the experiments and analyzed the measured data. PAN Jin-qi and YANG Jian-lei wrote the initial draft of the manuscript. All authors replied to reviewers comments and revised the final version.

Corresponding author

Correspondence to Jian-lei Yang  (杨建雷).

Additional information

Conflict of interest

PAN Jin-qi, ZHANG Wen-cong, YANG Jian-lei, CHEN Wen-zhen, and CUI Guo-rong declare that they have no conflict of interest.

Foundation item: Project(51905123) supported by the National Natural Science Foundation of China; Project(ZR2019MEM037) supported by the Natural Science Foundation of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Jq., Zhang, Wc., Yang, Jl. et al. Quantitative analysis on microstructure and high temperature fracture mechanism of 2.6vol%TiBw/Ti6Al4V composites with equiaxed microstructure after heat treatment. J. Cent. South Univ. 28, 2307–2319 (2021). https://doi.org/10.1007/s11771-021-4771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4771-1

Key words

关键词

Navigation