Skip to main content

Advertisement

Log in

Al2O3-Reinforced TiB2-Fe Composites: Microstructural and Mechanical Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effects of Al2O3 addition on microstructural and mechanical properties of TiB2-3 wt.% Fe composites were investigated. At first, TiB2 was synthesized via carbothermal reduction method. Then, four batches of TiB2-3 wt.%Fe-x wt.%Al2O3 (x = 0, 10, 20, 30) were prepared and consolidated by spark plasma sintering method at 1700 °C. Phase evaluation and microstructural observation of the prepared composites were studied through x-ray diffraction and field-emission scanning electron microscopy (FESEM) analysis, respectively. Vickers indentation and three point bending tests were used to evaluate the hardness, fracture toughness and flexural strength of the composites. Results showed that the addition of Al2O3 improved the densification and mechanical properties of the composites, however, the grain growth occurred. In other words, the results showed that the sample containing 10 wt.% Al2O3, exhibited the optimal mechanical properties, relative density (97 ± 1.8 g/cm3), hardness (18.70 ± 0.6 GPa), flexural strength (479.2 ± 34.2 MPa) and fracture toughness (6.84 ± 0.36 MPa m1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Twardowska, M. Podsiadło, I. Sulima, K. Bryła, and P. Hyjek, Microstructure and Properties of TiB2 Composites Produced by Spark Plasma Sintering with the Addition of Ti5Si3, Materials, 2021, 14, p 3812–3823.

    Article  CAS  Google Scholar 

  2. X. Li, T. Zhang, Ch. Chen, Sh. Song, S. Shen, G. He, Zh. Li, R. Li, Q. Zhen, S. Bashir, and J.L. Liu, Preparation of TiB2-SiC Composites Toughened with Interlocking Microstructure by Self-assembled TiB2 Plates, Ceram. Int., 2022, 48, p 5119–5129.

    Article  CAS  Google Scholar 

  3. N.S. Karthiselva, B.S. Murty, and S.R. Bakshi, Graphene Nanoplatelets Induce Crystallographic Texturing During Reactive Spark Plasma Sintering of TiB2, Carbon, 2018, 133, p 323–334.

    Article  CAS  Google Scholar 

  4. S. Nekahi, F.S. Moghanlou, M. Vajdi, Z. Ahmadi, A. Motallebzadeh, and M.S. Asl, Microstructural, Thermal and Mechanical Characterization of TiB2-SiC Composites Doped with Short Carbon Fibers, Int. J. Refract. Met. Hard Mater., 2019, 82, p 129–135.

    Article  CAS  Google Scholar 

  5. S. Sahoo and S.K. Singh, Synthesis of TiB2 by Extended Arc Thermal Plasma, Ceram. Int., 2017, 43(17), p 15561–15566.

    Article  CAS  Google Scholar 

  6. V. Moradi, L. Nikzad, I. Mobasherpour, and M. Razavi, Low Temperature Synthesis of TiB2 by Carbothermal Method, Ceram. Int., 2018, 44, p 19421–19426.

    Article  CAS  Google Scholar 

  7. M. Fattahi, Y. Pazhouhanfar, S.A. Delbari, and S. Shaddel, Influence of TiB2 Content on the Properties of TiC-SiCw Composites, Ceram. Int., 2020, 46, p 7403–7412.

    Article  CAS  Google Scholar 

  8. J.H. Zhu, H.M. Zhou, B. Qin, and Z.Y. Zhao, Design, Fabrication, and Properties of TiB2/TiN/WC Gradient Ceramic Tool Materials, Ceram. Int., 2020, 46, p 6497–6506.

    Article  CAS  Google Scholar 

  9. I. Smid and E. Kny, Evaluation of Binder Phases for Hard Metal Systems Based on TiB2, Int. J. Refract. Met. Hard Mater., 1988, 7(3), p 135–138.

    CAS  Google Scholar 

  10. L. Shuo and Z. Weiping, Research on Microstructure of in Situ Synthesized TiB2/Ni Metal–Ceramics Composite Coating, J. Mater. Sci. Poland, 2005, 391, p 146–150.

    Google Scholar 

  11. M. Hu, N. Bi, M. Liu, G. Gao, Sh. Li, and T. Su, Rapid Sintering of TiB2 Ceramics Using Co as Sintering Aid Under High Pressure Condition, J. Mater. Sci., 2020, 38(3), p 502–507.

    CAS  Google Scholar 

  12. L. Pecanha Jr., S.N. Monteiro, Í. Vale Tomaz, M. Oliveira, A. Ramalho, N. Simonassi, and F. Braga, Characterization of TiB2-AlN Composites for Application as Cutting Tool, J. Mater. Res. Technol., 2018, 7(4), p 403–616.

    Article  Google Scholar 

  13. M. Shahedi Asla, S.A. Delbaria, F. Shayesteha, Z. Ahmadia, and A. Motallebzadehb, Reactive Spark Plasma Sintering of TiB2-SiC-TiN Novel Composite, Int. J. Refract. Met. Hard Mater., 2019, 81, p 119–126.

    Article  Google Scholar 

  14. V. Nguyen, M. Shahedi Asl, Z. Hamidzadeh Mahaseni, M. Dashti Germi, Q. Van Le, Z. Ahmadi, M.R. Shokouhimehr, A. Sabahi Namini, and M. Mohammadi, Role of Co-Addition of BN and SiC on Microstructure of TiB2-Based Composites Densified by SPS Method, Ceram. Int., 2020, 46(16), p 25341–25350.

    Article  CAS  Google Scholar 

  15. S. Yan, Z. Lyu, and L. KokFoong, Effects of SiC Amount and Morphology on the Properties of TiB2-Based Composites Sintered by Hot-Pressing, Ceram. Int., 2020, 46(11), p 18813–18825.

    Article  CAS  Google Scholar 

  16. Z. Jinyong, T. Wenjun, F. Zhengyi, W. Weiming, and Z. Qingjie, Fabrication of Homogenous Dispersion TiB2-Al2O3 Composites, J. Wuhan Univ. Technol. Mater Sci. Ed., 2011, 26, p 681–683.

    Article  Google Scholar 

  17. T. Watanahe and A.N.D.K. Shoubu, Mechanical Properties of Hot-Pressed TiB2-ZrO2 Composite, J. Am. Ceram. Soc., 1985, 68, p C34–C36.

    Article  Google Scholar 

  18. A.Y. Popov, A.A. Sivak, H.Y. Borodianska, and I.L. Shabalin, High Toughness TiB2-Al2O3 Composite Ceramics Produced by Reactive Hot Pressing with Fusible Component, Adv. Appl. Ceram., 2015, 114(3), p 178–182.

    Article  Google Scholar 

  19. A. Rabiezadeh, A. Ataie, and A.M. Hadian, Sintering of Al2O3-TiB2 Nano-Composite Derived from Milling Assisted Sol–Gel Method, Int. J. Refract. Met. Hard Mater., 2012, 33, p 58–64.

    Article  CAS  Google Scholar 

  20. H.-W. Kim, Y.-H. Koh, and H.-E. Kim, Densification and Mechanical Properties of B4C with Al2O3 as a Sintering Aid, J. Am. Ceram. Soc., 2000, 83(11), p 2863–2865.

    Article  CAS  Google Scholar 

  21. J. Pyzik and D.R. Beaman, Microstructure and Properties of Self-reinforced Silicon Nitride, J. Am. Ceram. Soc., 1993, 76(11), p 2737–2744.

    Article  CAS  Google Scholar 

  22. M.S. Heidari and H.R. Baharvandi, Comparing the Effects of Different Sintering Methods for Ceramics on the Physical and Mechanical Properties of B4C-TiB2 Nanocomposites, Int. J. Refract. Met. Hard Mater., 2015, 51, p 61.

    Article  Google Scholar 

  23. A.N. Azar, L. Nikzad, and A. Moosavi, Spark Plasma Sintering and Mechanical Properties of Tungsten Carbide in Presence of Ni and Al2O3 Binders, Mater. Sci. Eng. A, 2021, 826, p 141968.

    Article  CAS  Google Scholar 

  24. L. Zhaog, C.Z. Huang, N. He, H.L. Liu, and B. Zou, Preparation and Cutting Performance of Reactively Hot Pressed TiB2-SiC Ceramic Tool When Machining Invar36 Alloy, Int. J. Refract. Met. Hard Mater., 2016, 86, p 2679–2688.

    Google Scholar 

  25. M. Gu, C. Huang, S. Xiao, and H. Liu, Improvements in Mechanical Properties of TiB2 Ceramics Tool Materials by the Dispersion of Al2O3 Particles, Mater. Sci. Eng., A, 2008, 486, p 167–170.

    Article  Google Scholar 

  26. G.D. Quinn, Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method: A Critical Review, Ceram. Eng. Sci. Proc., 2007, 27, p 45.

    Article  Google Scholar 

  27. N. Wu, F. Xue, H. Yang, G. Li, F. Luo, and J. Ruan, Effects of TiB2 Particle Size on the Microstructure and Mechanical Properties of TiB2-Based Composites, Ceram. Int., 2019, 45, p 1370–1378.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Materials and Energy Research Center (MERC) for providing the financial support throughout the research grant (No. 99391001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Nikzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibzadeh, S., Nikzad, L. & Majidian, H. Al2O3-Reinforced TiB2-Fe Composites: Microstructural and Mechanical Properties. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08308-3

Keywords

Navigation