Skip to main content
Log in

Processing and properties of titanium–titanium boride (TiBw) matrix composites—a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Although titanium (Ti) alloys possess desirable properties such as specific strength, corrosion resistance and low density, their low specific stiffness and wear resistance have restricted their widespread application. Recently, composite strategies have provided means for overcoming these limitations. Titanium boride (TiBw) in-situ whisker reinforcements are currently recognized as one of the most compatible and effective reinforcements for Ti. This paper provides an overview of recent activities in this evolving area of Ti–TiB composites, covering processing, properties and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tjong SC, Wang G (2005) Adv Eng Mater 7(1–2):63

    Article  CAS  Google Scholar 

  2. Gorsse S, Chaminade JP, Petitcorps YL (1998) Composites Part A 29(A):1229

    Article  Google Scholar 

  3. Liu G, Zhu D, Shang J-K (1993) Scripta Metall et Mater 28(6):729

    Article  CAS  Google Scholar 

  4. Ravi Chandran KS, Panda KB, Sahay SS (2004) JOM 56(5):42

    Google Scholar 

  5. Ma ZY, Tjong SC, Gen L (2000) Scripta Mater 42:367

    Article  Google Scholar 

  6. Zhang E, Jin Y, Wang H, Zeng S (2002) J Mater Sci 37(9):1861

    Article  CAS  Google Scholar 

  7. Feng H, Zhou Y, Jia D, Meng Q (2004) Comp Sci Tech 64(16):2495

    Article  CAS  Google Scholar 

  8. Saito T (2004) JOM 56(5):33

    CAS  Google Scholar 

  9. Abkowitz S, Abkowitz SM, Fisher H, Schwartz PJ (2004) JOM 56(5):37

    CAS  Google Scholar 

  10. Froes FH, Friedrich H, Kiese J, Bergoint D (2004) JOM 56(2):40

    CAS  Google Scholar 

  11. Ranganath S (1996) “Discontinuously reinforced titanium matrix composites via combustion-assisted synthesis in Inorganic matrix composites”, Proceedings of the discussion meeting sponsored by Jawarharal Nehru Center for Advanced Scientific Research and the Structural Materials division of TMS held at the Indian Institute of Science, Bangalore, India, March 8–11,1996 (edited by M.K. Surappa), p. 227

  12. Panda KB, Ravi Chandran KS (2003) Metall Mater Trans 34A(9):1993

    CAS  Google Scholar 

  13. Lu WJ, Zhang D, Wu RJ, Mori H (2002) Metall Mater Trans 33(9):3055

    Google Scholar 

  14. Geng K, Lu W, Qin Y, Zhang D (2004) Mater Res Bull 39(6):873

    Article  CAS  Google Scholar 

  15. Tjong SC, Ma ZY (2000) Mater Sci Eng Rep 29(3):49

    Article  Google Scholar 

  16. Morsi K, Moussa SO, Wall J (2005) J Mater Sci 40(4):1027

    Article  CAS  Google Scholar 

  17. Morsi K, Mcshane H, Mclean M (2000) Metall Mater Trans A 31(6):1663

    Google Scholar 

  18. Morsi K, Mcshane H, Mclean M (2000) Mater Sci Eng A 290(1):39

    Article  Google Scholar 

  19. Yang YQ, Dudek HJ, Kumudek J (1998) Mater Sci Eng A A246(1–2):213

    CAS  Google Scholar 

  20. Murray JL (1987) Handbook of binary phase diagrams, 547 pp

  21. Atri RR, Ravishandran KS, Jha SK (1999) Mater Sci Eng A A271(1–2):150

    CAS  Google Scholar 

  22. Fan Z, Miodownik AP, Chandrasekaran L, Ward-Close M (1999) J Mater Sci 29(4):1127

    Article  Google Scholar 

  23. Fan Z, Guo ZX, Cantor B (1997) Composites 28(2):131

    Article  Google Scholar 

  24. Li BS, Shang JL, Guo JJ, Fu HZ (2004) J Mater Sci 39(3):1131

    Article  CAS  Google Scholar 

  25. Zhang X, Lu W, Zhang D, Wu R (1999) Scripta Mater 41(1):39

    Article  CAS  Google Scholar 

  26. Panda KB, Ravi Chandran KS (2003) Metall Mater Trans A 34A(6):1371

    CAS  Google Scholar 

  27. Radhakrishna Bhat BV, Subramanyam J, Bhanu Prasad VV (2002) Mater Sci Eng A A325(1–2):126

    CAS  Google Scholar 

  28. Sahay SS, Ravi Chandran KS, Atri R, Chen B, Rubin J (1999) J Mater Res 14(11):4214

    CAS  Google Scholar 

  29. Feng H-B, Jia D-C, Zhou Y, Hou J (2004) Mater Sci Tech 20(9):1205

    Article  CAS  Google Scholar 

  30. Xinghong Z, Qiang X, Jiecai H, Kvanin VL (2003) Mater Sci Eng A 348(1–2):41

    Google Scholar 

  31. Feng H, Jia D, Zhou Y (2005) Composites Part A 36(5):558

    Article  Google Scholar 

  32. Yamamoto T, Otsuki A, Ishihara K, Shingu PH (1997) Mater Sci Eng A A239–240:647

    Google Scholar 

  33. Gorsse S, Miracle DM (2003) Acta Mater 51(9):2427

    Article  CAS  Google Scholar 

  34. Yoshihiro T, Tsuchiyama T, Takaki S (2004) Mater Trans 45(5):1640

    Article  CAS  Google Scholar 

  35. Morsi K (2001) Mater Sci Eng A A299(1–2):1

    CAS  Google Scholar 

  36. Kobayashi M, Funami K, Suzuki S, Ouchi C (1998) Mater Sci Eng A A243(1–2):279

    CAS  Google Scholar 

  37. Banerjee R, Genc A, Hill D, Collins PC, Fraser HL (2005) Scripta Mater 53(12):1433

    Article  CAS  Google Scholar 

  38. Cullity BD (1978) Elements of X-Ray Diffraction, 2nd edn. Addison-Wesley Pub. Co., p. 391

  39. Mallick PK (1988) Fiber-reinforced composites: Materials manufacturing and design. Marcel Dekker, New York, p. 111

  40. Fan Z, Miodownik AP, Chandrasekaran L, Ward-Close M (1999) J Mater Sci 29(4):1127

    Article  Google Scholar 

  41. Soboyejo WO, Shen W, Srivatsan TS (2004) Mech Mater 36(1–2):141

    Article  Google Scholar 

  42. Emura S, Yang SJ, Hagiwara M (2004) Metall Mater Trans A 35A(9):2971

    CAS  Google Scholar 

  43. Tsang HT, Chao CG, Ma CY (1997) Scripta Mater 37(9):1359

    Article  CAS  Google Scholar 

  44. Fan Z, Chandrasekaran L, Ward-Close CM, Miodownik AP (1995) Scripta Metall et Mater 32(6):833

    Article  CAS  Google Scholar 

  45. Godfrey TMT, Wisbey A, Goodwin PS, Bagnall K, Ward-Close CM (2000) Mater Sci Eng A A282(1):240

    CAS  Google Scholar 

  46. Ravi Chandran KS, Panda KB (2002) Adv Mater Proc 160(10):59

    Google Scholar 

  47. Godfrey TMT, Goodwin PS, Ward-Close CM (2000) Adv Eng Mater 2(3):85

    Article  CAS  Google Scholar 

  48. Saito T, Takamiya H, Furuta T (1998) Mater Sci Eng A A243(1–2):273

    CAS  Google Scholar 

  49. Li BS, Shang JL, Fu HZ (2004) Mater Sci Eng A A383(2):316

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the San Diego State University Research foundation for sponsoring the initiation of the Ti–TiB research work under the Research Scholarship & Creative Activities, and Faculty Development Program grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morsi, K., Patel, V.V. Processing and properties of titanium–titanium boride (TiBw) matrix composites—a review. J Mater Sci 42, 2037–2047 (2007). https://doi.org/10.1007/s10853-006-0776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0776-2

Keywords

Navigation