Skip to main content
Log in

Associations between mitochondrial copy number, exercise capacity, physiologic cost of walking, and cardiac strain in young adult survivors of childhood cancer

  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Purpose

Childhood cancer survivors are at risk for cardiac dysfunction and impaired physical performance, though underlying cellular mechanisms are not well studied. In this cross-sectional study, we examined the association between peripheral blood mitochondrial DNA copy number (mtDNA-CN, a proxy for mitochondrial function) and markers of performance impairment and cardiac dysfunction.

Methods

Whole-genome sequencing, validated by quantitative polymerase chain reaction, was used to estimate mtDNA-CN in 1720 adult survivors of childhood cancer (48.5% female; mean age = 30.7 years, standard deviation (SD) = 9.0). Multivariable logistic regression was performed to evaluate the associations between mtDNA-CN and exercise intolerance, walking inefficiency, and abnormal global longitudinal strain (GLS), adjusting for treatment exposures, age, sex, and race and ethnicity.

Results

The prevalence of exercise intolerance, walking inefficiency, and abnormal GLS among survivors was 25.7%, 10.7%, and 31.7%, respectively. Each SD increase of mtDNA-CN was associated with decreased odds of abnormal GLS (adjusted odds ratio (OR) = 0.88, p = 0.04) but was not associated with exercise intolerance (OR = 1.02, p = 0.76) or walking inefficiency (OR = 1.06, p = 0.46). Alkylating agent exposure was associated with increased odds of exercise intolerance (OR = 2.25, p < 0.0001), walking inefficiency (OR = 2.37, p < 0.0001), and abnormal GLS (OR = 1.78, p = 0.0002).

Conclusions

Increased mtDNA-CN is associated with decreased odds of abnormal cardiac function in childhood cancer survivors.

Implications for Cancer Survivors

These findings demonstrate a potential role for mtDNA-CN as a biomarker of early cardiac dysfunction in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are opening available at https://www.stjude.cloud/research-domains/cancer-survivorship. Data specific for this paper will be uploaded to https://zenodo.org concomitant with publication of the manuscript.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  2. National Cancer Institute. Cancer in children and adolescents 2023 [Available from: https://www.cancer.gov/types/childhood-cancers/child-adolescent-cancers-fact-sheet#:~:text=As%20of%20January%201%2C%202020,alive%20in%20the%20United%20States. Accessed 10/4/23

  3. Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32(12):1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ness KK, Krull KR, Jones KE, Mulrooney DA, Armstrong GT, Green DM, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St. Jude Lifetime Cohort Study. J Clin Oncol. 2013;31(36):4496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ness KK, DeLany JP, Kaste SC, Mulrooney DA, Pui CH, Chemaitilly W, et al. Energy balance and fitness in adult survivors of childhood acute lymphoblastic leukemia. Blood. 2015;125(22):3411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Henriksen PA. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2018;104(12):971–7.

    Article  CAS  PubMed  Google Scholar 

  8. Wang K, Tepper JE. Radiation therapy-associated toxicity: etiology, management, and prevention. CA Cancer J Clin. 2021;71(5):437–54.

    Article  PubMed  Google Scholar 

  9. Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW II, Kitsis RN, et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res. 2016;118(12):1960–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes (Basel). 2017;8(12):398.

    Article  PubMed  Google Scholar 

  11. Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes (Basel). 2017;8(12):398.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stamerra CA, Di Giosia P, Giorgini P, Ferri C, Sukhorukov VN, Sahebkar A. Mitochondrial dysfunction and cardiovascular disease: pathophysiology and emerging therapies. Oxid Med Cell Longev. 2022;2022:9530007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Scandalis L, Kitzman DW, Nicklas BJ, Lyles M, Brubaker P, Nelson MB, et al. Skeletal muscle mitochondrial respiration and exercise intolerance in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 2023;8(6):575–84.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tian Q, Mitchell BA, Zampino M, Fishbein KW, Spencer RG, Ferrucci L. Muscle mitochondrial energetics predicts mobility decline in well-functioning older adults: the Baltimore longitudinal study of aging. Aging Cell. 2022;21(2): e13552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang R, Wang Y, Ye K, Picard M, Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom. 2017;18(1):890.

    Article  Google Scholar 

  16. Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion. 2020;53:214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashar FN, Zhang Y, Longchamps RJ, Lane J, Moes A, Grove ML, et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017;2(11):1247–55.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McCastlain K, Howell CR, Welsh CE, Wang Z, Wilson CL, Mulder HL, et al. The association of mitochondrial copy number with sarcopenia in adult survivors of childhood cancer. J Natl Cancer Inst. 2021;113(11):1570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hudson MM, Ness KK, Nolan VG, Armstrong GT, Green DM, Morris EB, et al. Prospective medical assessment of adults surviving childhood cancer: study design, cohort characteristics, and feasibility of the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2011;56(5):825–36.

    Article  PubMed  Google Scholar 

  20. Ojha RP, Oancea SC, Ness KK, Lanctot JQ, Srivastava DK, Robison LL, et al. Assessment of potential bias from non-participation in a dynamic clinical cohort of long-term childhood cancer survivors: results from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2013;60(5):856–64.

    Article  PubMed  Google Scholar 

  21. Howell CR, Bjornard KL, Ness KK, Alberts N, Armstrong GT, Bhakta N, et al. Cohort profile: the St. Jude Lifetime Cohort Study (SJLIFE) for paediatric cancer survivors. Int J Epidemiol. 2021;50(1):39–49.

    Article  PubMed  Google Scholar 

  22. Wang Z, Wilson CL, Easton J, Thrasher A, Mulder H, Liu Q, et al. Genetic risk for subsequent neoplasms among long-term survivors of childhood cancer. J Clin Oncol. 2018;36(20):2078–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin N, Wang Z, Liu Q, Song N, Wilson CL, Ehrhardt MJ, et al. Pathogenic germline mutations in DNA repair genes in combination with cancer treatment exposures and risk of subsequent neoplasms among long-term survivors of childhood cancer. J Clin Oncol. 2020;38(24):2728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noda A. Radiation-induced unrepairable DSBs: their role in the late effects of radiation and possible applications to biodosimetry. J Radiat Res. 2018;59(suppl_2):ii114–20.

    Article  CAS  PubMed  Google Scholar 

  26. National Center for Biotechnology Information. CBI > DNA & RNA > Nucleotide Database Bethesda, MD2018 [Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_012920. Accessed 10/4/23

  27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ding J, Sidore C, Butler TJ, Wing MK, Qian Y, Meirelles O, et al. Assessing mitochondrial DNA variation and copy number in lymphocytes of ~2,000 Sardinians using tailored sequencing analysis tools. PLoS Genet. 2015;11(7): e1005306.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mengel-From J, Thinggaard M, Dalgard C, Kyvik KO, Christensen K, Christiansen L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum Genet. 2014;133(9):1149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wachsmuth M, Hubner A, Li M, Madea B, Stoneking M. Age-related and heteroplasmy-related variation in human mtDNA copy number. PLoS Genet. 2016;12(3): e1005939.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Venegas V, Wang J, Dimmock D, Wong LJ. Real-time quantitative PCR analysis of mitochondrial DNA content. Curr Protoc Hum Genet. 2011;Chapter 19:Unit 19 7.

    PubMed  Google Scholar 

  32. Wogksch MD, Goodenough CG, Finch ER, Partin RE, Ness KK. Physical activity and fitness in childhood cancer survivors: a scoping review. Aging Cancer. 2021;2(4):16.

    Article  Google Scholar 

  33. Bisschop CNS, Velthuis MJ, Wittink H, Kuiper K, Takken T, van der Meulen WJTM, et al. Cardiopulmonary exercise testing in cancer rehabilitation a systematic review. Sports Med. 2012;42(5):367–79.

    Article  Google Scholar 

  34. Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sport Exer. 2019;51(11):2375–90.

    Article  Google Scholar 

  35. Jones LW, Eves ND, Mackey JR, Peddle CJ, Haykowsky M, Joy AA, et al. Safety and feasibility of cardiopulmonary exercise testing in patients with advanced cancer. Lung Cancer. 2007;55(2):225–32.

    Article  PubMed  Google Scholar 

  36. Skalski J, Allison TG, Miller TD. The safety of cardiopulmonary exercise testing in a population with high-risk cardiovascular diseases. Circulation. 2012;126(21):2465–72.

    Article  PubMed  Google Scholar 

  37. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Wolters Kluwer; 2018.

    Google Scholar 

  38. Grazzi G, Myers J, Bernardi E, Terranova F, Grossi G, Codeca L, et al. Association between VO(2) peak estimated by a 1-km treadmill walk and mortality. A 10-year follow-up study in patients with cardiovascular disease. Int J Cardiol. 2014;173(2):248–52.

    Article  PubMed  Google Scholar 

  39. Okuro RT, de Oliveira Ribeiro MA, Ribeiro JD, Minsky RC, Schivinski CI. Alternative indexes to estimate the functional capacity from the 6-minute walk test in children and adolescents with cystic fibrosis. Respir Care. 2017;62(3):324–32.

    Article  PubMed  Google Scholar 

  40. Merritta C, Cherian B, Macaden AS, John JA. Measurement of physical performance and objective fatigability in people with mild-to-moderate traumatic brain injury. Int J Rehabil Res. 2010;33(2):109–14.

    Article  PubMed  Google Scholar 

  41. Delussu AS, Morone G, Iosa M, Bragoni M, Paolucci S, Traballesi M. Concurrent validity of physiological cost index in walking over ground and during robotic training in subacute stroke patients. Biomed Res Int. 2014;2014: 384896.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peebles K, Woodman-Aldridge A, Skinner M. The physiological cost index in elderly subjects during treadmill and floor walking. N Z J Physiother. 2003;31:7–11.

    Google Scholar 

  43. Wogksch MD, Finch ER, Nolan VG, Smeltzer MP, Mzayek F, Goodenough CG, et al. Energy cost of walking in obese survivors of Acute Lymphoblastic leukemia: a report from the St Jude Lifetime Cohort. Front Pediatr. 2022;10: 976012.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.

    Article  PubMed  Google Scholar 

  45. Yang H, Wright L, Negishi T, Negishi K, Liu J, Marwick TH. Research to practice: assessment of left ventricular global longitudinal strain for surveillance of cancer chemotherapeutic-related cardiac dysfunction. JACC Cardiovasc Imaging. 2018;11(8):1196–201.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mulrooney DA, Hyun G, Ness KK, Ehrhardt MJ, Yasui Y, Duprez D, et al. Major cardiac events for adult survivors of childhood cancer diagnosed between 1970 and 1999: report from the childhood cancer survivor study cohort. BMJ. 2020;368: l6794.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Armstrong GT, Liu Q, Yasui Y, Neglia JP, Leisenring W, Robison LL, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the childhood cancer survivor study. J Clin Oncol. 2009;27(14):2328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Z, Yang D, Zhou B, Luan Y, Yao Q, Liu Y, et al. Decrease of MtDNA copy number affects mitochondrial function and involves in the pathological consequences of ischaemic stroke. J Cell Mol Med. 2022;26(15):4157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeng JY, Yeh TS, Lee JW, Lin SH, Fong TH, Hsieh RH. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem. 2008;103(2):347–57.

    Article  CAS  PubMed  Google Scholar 

  51. Ashar FN, Moes A, Moore AZ, Grove ML, Chaves PHM, Coresh J, et al. Association of mitochondrial DNA levels with frailty and all-cause mortality. J Mol Med (Berl). 2015;93(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Guallar E, Ashar FN, Longchamps RJ, Castellani CA, Lane J, et al. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the atherosclerosis risk in communities study (ARIC). Eur Heart J. 2017;38(46):3443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tin A, Grams ME, Ashar FN, Lane JA, Rosenberg AZ, Grove ML, et al. Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study. J Am Soc Nephrol. 2016;27(8):2467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nesbitt GC, Mankad S, Oh JK. Strain imaging in echocardiography: methods and clinical applications. Int J Cardiovasc Imaging. 2009;25(Suppl 1):9–22.

    Article  PubMed  Google Scholar 

  55. Gunsaulus M, Alsaied T, Tersak JM, Friehling E, Rose-Felker K. Abnormal global longitudinal strain during anthracycline treatment predicts future cardiotoxicity in children. Pediatr Cardiol. 2023. https://doi.org/10.1007/s00246-023-03275-x

  56. Aziz-Bose R, Margossian R, Ames BL, Moss K, Ehrhardt MJ, Armenian SH, et al. Delphi panel consensus recommendations for screening and managing childhood cancer survivors at risk for cardiomyopathy. JACC CardioOncol. 2022;4(3):354–67.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dorn GW 2nd. Mitochondrial dynamics in heart disease. Biochim Biophys Acta. 2013;1833(1):233–41.

    Article  CAS  PubMed  Google Scholar 

  58. Park SY, Gifford JR, Andtbacka RH, Trinity JD, Hyngstrom JR, Garten RS, et al. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? Am J Physiol Heart Circ Physiol. 2014;307(3):H346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, et al. Association between mitochondrial DNA copy number and cardiovascular disease: current evidence based on a systematic review and meta-analysis. PLoS ONE. 2018;13(11): e0206003.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Karlsen S, Dahlslett T, Grenne B, Sjoli B, Smiseth O, Edvardsen T, et al. Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc Ultrasound. 2019;17(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Patel PN, Zwibel H. Physiology, exercise. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. September 12, 2022.

  62. Mehta JN, Gupta AV, Raval NG, Raval N, Hasnani N. Physiological cost index of different body mass index and age of an individual. Natl J Physiol Pharm Pharmacol. 2017;7(12):1313–7.

    Google Scholar 

  63. Ness KK, Plana JC, Joshi VM, Luepker RV, Durand JB, Green DM, et al. Exercise intolerance, mortality, and organ system impairment in adult survivors of childhood cancer. J Clin Oncol. 2020;38(1):29–42.

    Article  PubMed  Google Scholar 

  64. Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava D, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol. 2015;65(23):2511–22.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ, et al. Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the copenhagen city heart study. Circ Cardiovasc Imaging. 2017;10(3):e005521.

  66. Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, et al. Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging. 2013;6(5):692–9.

    Article  PubMed  Google Scholar 

  67. Palmer JD, Tsang DS, Tinkle CL, Olch AJ, Kremer LCM, Ronckers CM, et al. Late effects of radiation therapy in pediatric patients and survivorship. Pediatr Blood Cancer. 2021;68(Suppl 2): e28349.

    Article  PubMed  Google Scholar 

  68. Green DM, Nolan VG, Goodman PJ, Whitton JA, Srivastava D, Leisenring WM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the childhood cancer survivor study. Pediatr Blood Cancer. 2014;61(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  69. Henderson TO, Whitton J, Stovall M, Mertens AC, Mitby P, Friedman D, et al. Secondary sarcomas in childhood cancer survivors: a report from the childhood cancer survivor study. J Natl Cancer Inst. 2007;99(4):300–8.

    Article  PubMed  Google Scholar 

  70. Crouch ML, Knowels G, Stuppard R, Ericson NG, Bielas JH, Marcinek DJ, et al. Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects. PLoS ONE. 2017;12(7): e0181086.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dhesi S, Chu MP, Blevins G, Paterson I, Larratt L, Oudit GY, et al. Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. J Investig Med High Impact Case Rep. 2013;1(1):2324709613480346.

    PubMed  PubMed Central  Google Scholar 

  72. Sato AY, Richardson D, Cregor M, Davis HM, Au ED, McAndrews K, et al. Glucocorticoids induce bone and muscle atrophy by tissue-specific mechanisms upstream of E3 ubiquitin ligases. Endocrinology. 2017;158(3):664–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Salamone IM, Quattrocelli M, Barefield DY, Page PG, Tahtah I, Hadhazy M, et al. Intermittent glucocorticoid treatment enhances skeletal muscle performance through sexually dimorphic mechanisms. J Clin Invest. 2022;132(6):e149828.

  74. Armenian S, Bhatia S. Predicting and preventing anthracycline-related cardiotoxicity. Am Soc Clin Oncol Educ Book. 2018;38:3–12.

    Article  PubMed  Google Scholar 

  75. Hudson MM, Bhatia S, Casillas J, Landier W, Section on Hematology/Oncology, Children's Oncology Group, American Society of Pediatric Hematology/Oncology. Long-term follow-up care for childhood, adolescent, and young adult cancer survivors. Pediatrics. 2021;148(3):e2021053127.

  76. Dixon SB, Chen Y, Yasui Y, Pui CH, Hunger SP, Silverman LB, et al. Reduced morbidity and mortality in survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study. J Clin Oncol. 2020;38(29):3418–29.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tracie Gatewood for formatting assistance and manuscript preparation.

Funding

This work was supported by grants provided by the National Cancer Institute (CA195547, MMH and KKN; CA174851 KKN), the Cancer Center Support Grant (CA21765, CRR), and the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Contributions

AB: writing—original draft; CG: data curation, formal analysis; PD; writing—original draft; CH: writing—review and editing; ZW: conceptualization, writing—review and editing; JE: data curation; HM: data curation; GA: supervision; MH: funding, writing—review and editing, supervision; MK: conceptualization, writing—review and editing; KN: conceptualization, data curation, funding, formal analysis, writing—original draft.

Corresponding author

Correspondence to Kirsten K. Ness.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Approval was granted by the Institutional Review Board of St. Jude Children’s Research Hospital.

Consent to participate

Written informed consent was obtained from all individual participants and/or caregiver in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkman, A.M., Goodenough, C.G., Durakiewicz, P. et al. Associations between mitochondrial copy number, exercise capacity, physiologic cost of walking, and cardiac strain in young adult survivors of childhood cancer. J Cancer Surviv (2024). https://doi.org/10.1007/s11764-024-01590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11764-024-01590-7

Keywords

Navigation