Skip to main content

Advertisement

Log in

Strain imaging in echocardiography: methods and clinical applications

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Echocardiography is the most common diagnostic method for assessing cardiac functions. However, echocardiographic measures are subjective, semi-quantitative, and relatively insensitive when detecting subtle perturbations in contractility. Furthermore, early detection of abnormalities is crucial and may often influence treatments and establish prognosis. Echocardiographic- and Doppler-derived strain and strain rate imaging are relatively newer and more comprehensive techniques. They characterize the mechanics of myocardial contraction and relaxation (deformation imaging) more precisely and find applications in many cardiac pathologies. They are especially useful for assessing longitudinal myocardial deformation, which is otherwise difficult to assess using standard echocardiographic visual inspection. This review describes the fundamental concepts of strain imaging derived from tissue Doppler and two-dimensional speckle tracking and investigates how these methods can be incorporated into echocardiographic examinations and highlights their clinical applications. The considerable potentiality of imaging modalities for numerous cardiac conditions is thereby shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Curtis JP, Sokol SI, Wang Y et al (2003) The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol 42(4):736–742. doi:10.1016/S0735-1097(03)00789-7

    Article  PubMed  Google Scholar 

  2. Greenbaum RA, Ho SY, Gibson DG et al (1981) Left ventricular fibre architecture in man. Br Heart J 45(3):248–263. doi:10.1136/hrt.45.3.248

    Article  PubMed  CAS  Google Scholar 

  3. Pellikka PA, Nagueh SF, Elhendy AA et al (2007) American society of echocardiography recommendations for performance, interpretation and application of stress echocardiography. J Am Soc Echocardiogr 20(9):1021–1041. doi:10.1016/j.echo.2007.07.003

    Article  PubMed  Google Scholar 

  4. Hoffmann R, Lethen H, Marwick T et al (1996) Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 27(2):330–336. doi:10.1016/0735-1097(95)00483-1

    Article  PubMed  CAS  Google Scholar 

  5. Gorcsan J 3rd, Deswal A, Mankad S et al (1998) Quantification of the myocardial response to low-dose dobutamine using tissue Doppler echocardiographic measures of velocity and velocity gradient. Am J Cardiol 81(5):615–623. doi:10.1016/S0002-9149(97)00973-9

    Article  PubMed  CAS  Google Scholar 

  6. Heimdal A, Stoylen A, Torp H et al (1998) Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr 11(11):1013–1019. doi:10.1016/S0894-7317(98)70151-8

    Article  PubMed  CAS  Google Scholar 

  7. Mirsky I, Parmley WW (1973) Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res 33(2):233–243

    PubMed  CAS  Google Scholar 

  8. Urheim S, Edvardsen T, Torp H et al (2000) Myocardial strain by Doppler echocardiography validation of a new method to quantify regional myocardial function. Circulation 102(10):1158–1164

    PubMed  CAS  Google Scholar 

  9. Aurigemma GP, Douglas PS, Gaasch HW (2002) Quantitative evaluation of left ventricular structure, wall stress and systolic function. In: Otto CM (ed) The practice of clinical echocardiography. WB Saunders Company, Philadelphia, pp 65–87

    Google Scholar 

  10. Stoylen A, Heimdal A, Bjornstad K et al (1999) Strain rate imaging by ultrasound in the diagnosis of regional dysfunction of the left ventricle. Echocardiography 16(4):321–329. doi:10.1111/j.1540-8175.1999.tb00821.x

    Article  PubMed  Google Scholar 

  11. Zerhouni EA, Parish DM, Rogers WJ et al (1988) Human heart: tagging with MR imaging—a method of noninvasive assessment of myocardial motion. Radiology 169(1):59–63

    PubMed  CAS  Google Scholar 

  12. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171(3):841–845

    PubMed  CAS  Google Scholar 

  13. Sutherland GR, Steward MJ, Groundstroem KW et al (1994) Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 7:441–458

    PubMed  CAS  Google Scholar 

  14. Uematsu M, Miyatake K, Tanaka N et al (1995) Myocardial velocity gradient as a new indicator of regional left ventricular contraction: detection by a two-dimensional Doppler imaging technique. J Am Coll Cardiol 26(1):217–223. doi:10.1016/0735-1097(95)00158-V

    Article  PubMed  CAS  Google Scholar 

  15. Edvardsen T, Gerber BL, Garot J et al (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106(1):50–56. doi:10.1161/01.CIR.0000019907.77526.75

    Article  PubMed  Google Scholar 

  16. Amundsen BH, Helle-Valle T, Edvardsen T et al (2006) Noninvasive myocardial strain measurement by speckle tracing echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793. doi:10.1016/j.jacc.2005.10.040

    Article  PubMed  Google Scholar 

  17. Hanekom L, Cho GY, Leano R et al (2007) Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J 28(14):1765–1772. doi:10.1093/eurheartj/ehm188

    Article  PubMed  Google Scholar 

  18. Perk G, Tunick PA, Kronzon I (2007) Non-Doppler two-dimensional strain imaging by echocardiography—from technical considerations to clinical applications. J Am Soc Echocardiogr 20(3):234–243. doi:10.1016/j.echo.2006.08.023

    Article  PubMed  Google Scholar 

  19. Pirat B, Khoury DS, Hartley CJ et al (2008) A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia–reperfusion. J Am Coll Cardiol 51(6):651–659. doi:10.1016/j.jacc.2007.10.029

    Article  PubMed  Google Scholar 

  20. Voigt JU, Arnold MF, Karlsson M et al (2000) Assessment of regional longitudinal myocardial strain rate derived from Doppler myocardial imaging indexes in normal and infarcted myocardium. J Am Soc Echocardiogr 13(6):588–598. doi:10.1067/mje.2000.105631

    Article  PubMed  CAS  Google Scholar 

  21. Weidemann F, Wacker C, Rauch A et al (2006) Sequential changes of myocardial function during acute myocardial infarction, in the early and chronic phase after coronary intervention described by ultrasonic strain rate imaging. J Am Soc Echocardiogr 19(7):839–847. doi:10.1016/j.echo.2006.01.024

    Article  PubMed  Google Scholar 

  22. Weidemann F, Jung P, Hoyer C et al (2007) Assessment of contractile reserve in patients with intermediate coronary lesions: a strain imaging study validated by invasive myocardial fractional flow reserve. Eur Heart J 28(12):1425–1432. doi:10.1093/eurheartj/ehm082

    Article  PubMed  Google Scholar 

  23. Park TH, Nagueh SF, Khoury DS et al (2006) Impact of myocardial structure and function postinfarction on diastolic strain measurements: implications for assessment of myocardial viability. Am J Physiol Heart Circ Physiol 209(2):H724–H731

    Google Scholar 

  24. Edvardsen T, Skulstad H, Aakhus S et al (2001) Regional myocardial systolic function during acute ischemia assessed by strain Doppler echocardiography. J Am Coll Cardiol 37(3):726–730. doi:10.1016/S0735-1097(00)01160-8

    Article  PubMed  CAS  Google Scholar 

  25. Abraham TP, Nishimura RA, Holmes DR Jr et al (2002) Strain rate imaging for assessment of regional myocardial function: results from a clinical model of septal ablation. Circulation 105(12):1403–1406. doi:10.1161/01.CIR.0000013423.33806.77

    Article  PubMed  Google Scholar 

  26. Armstrong G, Pasquet A, Fukamachi K et al (2000) Use of peak systolic strainas an index of regional myocardial function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia. J Am Soc Echocardiogr 13(8):731–737. doi:10.1067/mje.2000.105912

    Article  PubMed  CAS  Google Scholar 

  27. Yip G, Khandheria B, Belohlavek M et al (2004) Strain echocardiography tracks dobutamine-induced decrease in regional myocardial perfusion in nonocclusive coronary stenosis. J Am Coll Cardiol 44(8):1664–1671. doi:10.1016/j.jacc.2004.02.065

    Article  PubMed  Google Scholar 

  28. Hoffmann R, Altiok E, Nowak B et al (2002) Strain rate measurement by Doppler echocardiography allows improved assessment of myocardial viability in patients with depressed left ventricul function. J Am Coll Cardiol 39(3):443–449. doi:10.1016/S0735-1097(01)01763-6

    Article  PubMed  Google Scholar 

  29. Hanekom L, Jenkins C, Jeffries L et al (2005) Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography: a follow-up study after revascularization. Circulation 112(25):3892–3900. doi:10.1161/CIRCULATIONAHA.104.489310

    Article  PubMed  Google Scholar 

  30. Zhang Y, Chan AK, Yu CM et al (2005) Strain rate imaging differentiates transmural from non-transmural myocardial infarction: a validation study using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 46(5):864–871. doi:10.1016/j.jacc.2005.05.054

    Article  PubMed  Google Scholar 

  31. Dandel M, Wellnhofer E, Lehmkuhl H et al (2006) Early detection of left ventricular wall motion alterations in heart allografts with coronary artery disease: diagnostic valvue of tissue Doppler and two-dimensional (2D) strain echocardiography. Eur J Echocardiogr 7:S127–S128. doi:10.1016/S1525-2167(06)60477-0

    Article  Google Scholar 

  32. Dandel M, Wellnhofer E, Hummel M et al (2003) Early detection of left ventricular dysfunction related to transplant coronary artery disease. J Heart Lung Transplant 22(12):1353–1364. doi:10.1016/S1053-2498(03)00055-X

    Article  PubMed  Google Scholar 

  33. Marciniak A, Eroglu E, Marciniak M et al (2007) The potential clinical role of strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr 8(3):213–221. doi:10.1016/j.euje.2006.03.014

    Article  PubMed  Google Scholar 

  34. Falk RH (2005) Diagnosis and management of the cardiac amyloidoses. Circulation 112(13):2047–2060. doi:10.1161/CIRCULATIONAHA.104.489187

    Article  PubMed  Google Scholar 

  35. Koyama J, Ray-Sequin PA, Falk RH (2003) Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107(19):2446–2452. doi:10.1161/01.CIR.0000068313.67758.4F

    Article  PubMed  Google Scholar 

  36. Bellavia D, Pellikka PA, Abraham TP et al (2008) Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. Am J Cardiol 101(7):1039–1045. doi:10.1016/j.amjcard.2007.11.047

    Article  PubMed  Google Scholar 

  37. Bellavia D, Abraham TP, Pellikka PA et al (2007) Detection of left ventricular systolic dysfunction in cardiac amyloidosis with strain rate echocardiography. J Am Soc Echocardiogr 20(10):1194–1202. doi:10.1016/j.echo.2007.02.025

    Article  PubMed  Google Scholar 

  38. Dubrey SW, Cha K, Skinner M et al (1997) Familial and primary (AL) cardiac amyloidosis: echocardiography similar diseases with distinctly different clinical outcomes. Heart 78(1):74–82

    PubMed  CAS  Google Scholar 

  39. Ogiwara F, Koyama J, Ikeda S et al (2005) Comparison of the strain Doppler echocardiographic features of familial amyloid polyneuropathy (FAP) and light-chain amyloidosis. Am J Cardiol 95(4):538–540. doi:10.1016/j.amjcard.2004.10.029

    Article  PubMed  Google Scholar 

  40. Wigle ED, Rakowski H, Kimball BP et al (1995) Hypertrophic cardiomyopathy clinical spectrum and treatment. Circulation 92(7):1680–1692

    PubMed  CAS  Google Scholar 

  41. Seidman C (2002) Genetic causes of inherited cardiac hypertrophy: Robert L. Fyre lecture. Mayo Clin Proc 77(12):1315–1319

    Article  PubMed  Google Scholar 

  42. Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies:an American Heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups;and council on epidemiology and prevention. Circulation 113(14):1807–1816. doi:10.1161/CIRCULATIONAHA.106.174287

    Article  PubMed  Google Scholar 

  43. Palka P, Lange A, Fleming AD et al (1997) Differences in myocardial velocity gradient measured throughout the cardiac cycle in patients with hypertrophic cardiomyopathy, athletes, and patients with left ventricular hypertrophy due to hypertension. J Am Coll Cardiol 30(3):760–768. doi:10.1016/S0735-1097(97)00231-3

    Article  PubMed  CAS  Google Scholar 

  44. Kato TS, Noda A, Izawa H et al (2004) Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 110(25):3808–3814. doi:10.1161/01.CIR.0000150334.69355.00

    Article  PubMed  Google Scholar 

  45. Nagueh SF, Bachinski LL, Meyer D et al (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104(2):128–130

    PubMed  CAS  Google Scholar 

  46. Maier SE, Fischer SE, McKinnon GC et al (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 86(6):1919–1928

    PubMed  CAS  Google Scholar 

  47. Yang H, Sun JP, Lever HM et al (2003) Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 16(3):233–239. doi:10.1067/mje.2003.60

    Article  PubMed  Google Scholar 

  48. Kato TS, Izawa H, Komamura K et al (2008) Heterogeneity of regional systolic function detected by tissue Doppler imaging is linked to impaired global left ventricular relaxation in hypertrophic cardiomyopathy. Heart 94(10):1302–1306. doi:10.1136/hrt.2007.124453

    Article  PubMed  CAS  Google Scholar 

  49. Carasso S, Yang H, Woo A et al (2008) Systolic myocardial mechanics in hypertrophic cardiomyopathy: novel concepts and implications for clinical status. J Am Soc Echocardiogr 21(6):675–683. doi:10.1016/j.echo.2007.10.021

    Article  PubMed  Google Scholar 

  50. Carasso S, Woo A, Yang H et al (2008) Myocardial mechanics explains the time course of benefit for septal ethanol ablation for hypertrophic cardiomyopathy. J Am Soc Echocardiogr 21(5):494–499. doi:10.1016/j.echo.2007.08.020

    Google Scholar 

  51. Rakowski H, Carasso S (2007) Quantifying diastolic function in hypertrophic cardiomyopathy: the ongoing search for the holy grail. Circulation 116(23):2662–2665. doi:10.1161/CIRCULATIONAHA.107.742395

    Article  PubMed  Google Scholar 

  52. Corrado D, Fontaine G, Marcus FI et al (2000) Arrhythmogenic right ventricular dysplasia/cardiomyopathy: need for an international registry. Study Group on arrhythmogenic right ventricular dysplasia/cardiomyopathy of the working groups on myocardial and pericardial disease and arrhythmias of the European society of cardiology and of the scientific council on cardiomyopathies of the World heart federation. Circulation 101(11):E101–E106

    PubMed  CAS  Google Scholar 

  53. Prakasa KR, Wang J, Tandri H et al (2007) Utility of tissue Doppler and strain echocardiography in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Cardiol 100(3):507–512. doi:10.1016/j.amjcard.2007.03.053

    Article  PubMed  Google Scholar 

  54. Pirat B, McCulloch ML, Zoghbi WA (2006) Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 98(5):699–704. doi:10.1016/j.amjcard.2006.03.056

    Article  PubMed  Google Scholar 

  55. Agmon Y, Connolly HM, Olson LJ et al (1999) Noncompaction of the ventricular myocardium. J Am Soc Echocardiogr 12(10):859–863. doi:10.1016/S0894-7317(99)70192-6

    Article  PubMed  CAS  Google Scholar 

  56. Alizad A, Seward JB (2000) Echocardiographic features of genetic diseases: part 1. Cardiomyopathy. J Am Soc Echocardiogr 13((1):73–86

    PubMed  CAS  Google Scholar 

  57. Williams RI, Masani ND, Buchalter MB et al (2003) Abnormal myocardial strain rate in noncompaction of the left ventricle. J Am Soc Echocardiogr 16(3):293–296. doi:10.1067/mje.2003.47

    Article  PubMed  Google Scholar 

  58. Child JS, Perloff JK, Bach PM et al (1986) Cardiac Involvement in Friedreich’s ataxia: a clinical study of 75 patients. J Am Coll Cardiol 7(6):1370–1378

    Article  PubMed  CAS  Google Scholar 

  59. Weidemann F, Eyskens B, Mertens L et al (2003) Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes in Friedreich’s ataxia. Am J Cardiol 91(5):622–626. doi:10.1016/S0002-9149(02)03325-8

    Article  PubMed  Google Scholar 

  60. Dutka DP, Donnelly JE, Palka P et al (2000) Echocardiographic characterization of cardiomyopathy in Friedreich’s ataxia with tissue Doppler echocardiographically derived myocardial velocity gradients. Circulation 102(11):1276–1282

    PubMed  CAS  Google Scholar 

  61. Schiffmann R, Kopp JB, Austin HA 3rd et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285(21):2743–2749. doi:10.1001/jama.285.21.2743

    Article  PubMed  CAS  Google Scholar 

  62. Pieroni M, Chimenti C, Ricci R et al (2003) Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 107(15):1978–1984. doi:10.1161/01.CIR.0000061952.27445.A0

    Article  PubMed  Google Scholar 

  63. Weidemann F, Breunig F, Beer M et al (2003) Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study. Circulation 108(11):1299–1301. doi:10.1161/01.CIR.0000091253.71282.04

    Article  PubMed  CAS  Google Scholar 

  64. Epstein AE, DiMarco JP, Ellenbogen KA et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. Heart Rhythm 5(6):e1–e62. doi:10.1016/j.hrthm.2008.04.014

    Article  PubMed  Google Scholar 

  65. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346(24):1845–1853. doi:10.1056/NEJMoa013168

    Article  PubMed  Google Scholar 

  66. Cleland JG, Daubart JC, Erdmann E et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352(15):1539–1549. doi:10.1056/NEJMoa050496

    Article  PubMed  CAS  Google Scholar 

  67. Chung ES, Leon AR, Tavazzi L et al (2008) Results of the predictors of response to CRT (prospect) trial. Circulation 117(20):2608–2616. doi:10.1161/CIRCULATIONAHA.107.743120

    Article  PubMed  Google Scholar 

  68. Yu CM, Zhang Q, Chan YS et al (2006) Tissue Doppler velocity is superior to displacement and strain mapping in predicting left ventricular reverse remodeling response after cardiac resynchronisation therapy. Heart 92(10):1452–1456. doi:10.1136/hrt.2005.083592

    Article  PubMed  Google Scholar 

  69. Yu CM, Gorcsan J 3rd, Bleeker GB et al (2007) Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol 100(8):1263–1270. doi:10.1016/j.amjcard.2007.05.060

    Article  PubMed  Google Scholar 

  70. Knebel F, Schattke S, Bondke H et al (2007) Evaluation of longitudinal and radial two-dimensional strain imaging versus Doppler tissue echocardiography in predicting long-term response to cardiac resynchronization therapy. J Am Soc Echocardiogr 20(4):335–341. doi:10.1016/j.echo.2006.09.007

    Article  PubMed  Google Scholar 

  71. Miyazaki C, Lin G, Powell BD et al (2008) Strain dyssynchrony index correlates with improvement in left ventricular volume after cardiac resynchronization therapy better than tissue velocity dyssynchrony indexes. Circ Cardiovasc Imaging 1:14–22. doi:10.1161/CIRCIMAGING.108.774513

    Article  PubMed  Google Scholar 

  72. Miyazaki C, Powell BD, Bruce CJ et al (2008) Comparison of echocardiographic dyssynchrony assessment by tissue velocity and strain imaging in subjects with or without systolic dysfunction and with or without left bundle-branch block. Circulation 117(20):2617–2625. doi:10.1161/CIRCULATIONAHA.107.733675

    Article  PubMed  Google Scholar 

  73. Mele D, Pasanisi G, Capasso F et al (2006) Left intraventricular myocardial deformation dyssynchrony identifies responders to cardiac resynchronization therapy in patients with heart failure. Eur Heart J 27(9):1070–1078. doi:10.1093/eurheartj/ehi814

    Article  PubMed  Google Scholar 

  74. Dohi K, Suffoletto MS, Schwartzman D et al (2005) Utility of echocardiographic radial strain imaging to quantify left ventricular dyssynchrony and predict acute response to cardiac resynchronization therapy. Am J Cardiol 96(1):112–116. doi:10.1016/j.amjcard.2005.03.032

    Article  PubMed  Google Scholar 

  75. Suffoletto MS, Dohi K, Cannesson M et al (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113(7):960–968. doi:10.1161/CIRCULATIONAHA.105.571455

    Article  PubMed  Google Scholar 

  76. Delgado V, Ypenburg C, van Bommel RJ et al (2008) Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol 51(2):1944–1952. doi:10.1016/j.jacc.2008.02.040

    Article  PubMed  Google Scholar 

  77. Lim P, Buakhamsri A, Popovic ZB et al (2008) Longitudinal strain delay index by speckle tracking imaging: a new marker of response to cardiac resynchronization therapy. Circulation 118(11):1130–1137. doi:10.1161/CIRCULATIONAHA.107.750190

    Article  PubMed  Google Scholar 

  78. Park SJ, Miyazaki C, Bruce CJ et al (2008) Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J Am Soc Echocardiogr 21(10):1129–1137. doi:10.1016/j.echo.2008.04.002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Mankad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesbitt, G.C., Mankad, S. & Oh, J.K. Strain imaging in echocardiography: methods and clinical applications. Int J Cardiovasc Imaging 25 (Suppl 1), 9–22 (2009). https://doi.org/10.1007/s10554-008-9414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9414-1

Keywords

Navigation