Skip to main content
Log in

Determination of Fecal Sterols Following a Diet with and without Plant Sterols

  • Original Article
  • Published:
Lipids

Abstract

The aim of this study was to develop a method for neutral fecal sterols determination in subjects receiving a normal diet with or without a plant sterols-enriched beverage using gas chromatography–mass spectrometry (GC/MS). Sample preparation conditions (homogenization of lyophilized feces with water) were evaluated. Sterol determination required direct hot saponification, unsaponifiable extraction with hexane, and the formation of trimethylsilyl (TMS) ether derivatives. The method allows the quantification of cholesterol, plant sterols and their metabolites (coprostanol, coprostanone, cholestanol, cholestanone, methylcoprostanol, methylcoprostanone, ethylcoprostenol, stigmastenol, ethylcoprostanol and ethylcoprostanone). Good linearity was obtained (r > 0.96) and interference was only observed for coprostanone, where the standard addition method proved necessary for quantification. The limits of detection (LOD) ranged from 0.10 to 3.88 µg/g dry feces and the limits of quantitation (LOQ) from 0.34 to 12.94 µg/g dry feces. Intra- and inter-assay precision (RSD %) were 0.9–9.2 and 2.1–11.3, respectively. Accuracy, expressed as percentage recovery (80–119%) was obtained for all determined sterols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PS:

Plant sterols

GC/MS:

Gas chromatography–mass spectrometry

RSD:

Relative standard deviation

LOD:

Limit of detection

LOQ:

Limit of quantitation

IS:

Internal standard

BHT:

Butylhydroxytoluene

BSTFA:

N,O-Bis(trimethylsilyl)trifluoroacetamide

TMCS:

Trimethylchlorosilane

TMS:

Trimethylsilyl

Rrt:

Relative retention time

Rt:

Retention time

NIST:

National Institute of Standards and Technology

SD:

Standard deviation

AOAC:

Association of Official Analytical Chemists

Brassicasterol:

5,22-Cholestadien-24β-methyl-3β-ol

Campestanol:

24α-Methyl-5β-cholestan-3β-ol

Campesterol:

24α-Methyl-5-cholesten-3β-ol

Coprostanol:

5β-Cholestan-3β-ol

Coprostanone:

5β-Cholestan-3-one

Cholestane:

5α-Cholestane

Cholestanol:

5α-Cholestan-3β-ol

Cholestanone:

5α-Cholestan-3-one

Cholestenone:

4-Cholesten-3-one

Cholesterol:

5-Cholesten-3β-ol

Cholesterone:

5-Cholesten-3-one

Desmosterol:

5,24-Cholestadien-3β-ol

Epicoprostanol:

5β-Cholestan-3α-ol

Ethylcoprostanol:

24β-Ethyl-5β-cholestan-3β-ol

Ethylcoprostanone:

24β-Ethyl-5β-cholestan-3-one

Ethylcoprostenol:

24β-Ethyl-5β-cholestan-3α-ol

Lathosterol:

5α-Cholest-7-en-3β-ol

β-Sitosterol:

5-Stigmansten-3β-ol

Methylcoprostanol:

24α-Methyl-5β-cholestan-3β-ol

Methylcoprostanone:

24α-Methyl-5β-cholestan-3-one

Stigmastanol:

3β-5α-Stigmastan-3-ol

Stigmastenol:

5α-Stigmast-7-en-3β-ol

Stigmasterol:

Stigmastan-5,22-dien-3β-ol

References

  1. Racette SB, Lin X, Ma L, Ostlund RE Jr (2015) Natural dietary phytosterols. J AOAC Int 98:679–684

    Article  CAS  PubMed  Google Scholar 

  2. Trautwein EA, Demonty I (2007) Phytosterols: natural compounds with established and emerging health benefits. Ocl ol Corps Gras Lipides 14:259–266

    Article  CAS  Google Scholar 

  3. García-Llatas G, Rodríguez-Estrada MT (2011) Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 164:607–624

    Article  PubMed  Google Scholar 

  4. Wong A (2014) Chemical and microbiological considerations of phytosterols and their relative efficacies in functional foods for the lowering of serum cholesterol levels in humans: a review. J Funct Foods 6:60–72

    Article  CAS  Google Scholar 

  5. Björkhem I, Gustafsson JÅ (1971) Mechanism of microbial transformation of cholesterol into coprostanol. Eur J Biochem 21:428–432

    Article  PubMed  Google Scholar 

  6. Huang CT, Rodriguez JT, Woodward WE, Nichols BL (1976) Comparison of patterns of fecal bile acid and neutral sterol between children and adults. Am J Clin Nutr 29:1196–1203

    CAS  PubMed  Google Scholar 

  7. Ren D, Li L, Schwabacher AW, Young JW, Beitz DC (1996) Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 61:33–40

    Article  CAS  PubMed  Google Scholar 

  8. Rosenfeld R, Fukushima DK, Hellman L, Gallagher TF (1954) The transformation of cholesterol to coprostanol. J Biol Chem 211:301–311

    CAS  PubMed  Google Scholar 

  9. Macdonald IA, Bokkenheuser VD, Winter J, McLernon AM, Mosbach EH (1983) Degradation of steroids in the human gut. J Lipid Res 24:675–700

    CAS  PubMed  Google Scholar 

  10. Eneroth P, Hellström K, Ryhage R (1964) Identification and quantification of neutral fecal steroids by gas–liquid chromatography and mass spectrometry: studies of human excretion during two dietary regimens. J Lipid Res 5:245–262

    CAS  PubMed  Google Scholar 

  11. Korpela JT (1982) Capillary gas–liquid chromatography of faecal free and esterified neutral sterols. Scand J Clin Lab Investig 42:529–534

    Article  CAS  Google Scholar 

  12. Arca M, Montali A, Ciocca S, Angelico F, Cantafora A (1983) An improved gas–liquid chromatographic method for the determination of fecal neutral sterols. J Lipid Res 24:332–335

    CAS  PubMed  Google Scholar 

  13. Batta AK, Salen G, Rapole KR, Batta M, Batta P, Alberts D, Earnest D (1999) Highly simplified method for gas–liquid chromatographic quantitation of bile acids and sterols in human stool. J Lipid Res 40:1148–1154

    CAS  PubMed  Google Scholar 

  14. Weststrate JA, Ayesh R, Bauer-Plank C, Drewitt PN (1999) Safety evaluation of phytosterol esters. Part 4. Faecal concentrations of bile acids and neutral sterols in healthy normolipidaemic volunteers consuming a controlled diet either with or without a phytosterol ester-enriched margarine. Food Chem Toxicol 37:1063–1071

    Article  CAS  PubMed  Google Scholar 

  15. Batta AK, Salen G, Batta P, Tint GS, Alberts DS, Earnest DL (2002) Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas–liquid chromatography. J Chromatogr B 775:153–161

    Article  CAS  Google Scholar 

  16. Keller S, Jahreis G (2004) Determination of underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography–mass spectrometry—single ion monitoring in faeces. J Chromatogr B 813:199–207

    Article  CAS  Google Scholar 

  17. Shah VG, Dunstan RH, Geary PM, Coombes P, Roberts TK, von Nagy-Felsobuki E (2007) Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples. Water Res 41:3691–3700

    Article  CAS  PubMed  Google Scholar 

  18. Wu J, Hu R, Yue J, Yang Z, Zhang L (2009) Determination of fecal sterols by gas chromatography–mass spectrometry with solid-phase extraction and injection-port derivatization. J Chromatogr A 1216:1053–1058

    Article  CAS  PubMed  Google Scholar 

  19. Reddy BS, Wynder EL (1977) Metabolic epidemiology of colon cancer: fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer 39:2533–2539

    Article  CAS  PubMed  Google Scholar 

  20. Bradford PG, Awad AB (2007) Phytosterols as anticancer compounds. Mol Nutr Food Res 51:161–170

    Article  CAS  PubMed  Google Scholar 

  21. Bradford PG, Awad AB (2010) Modulation of signal transduction in cancer cells by phytosterols. BioFactors 36:241–247

    Article  CAS  PubMed  Google Scholar 

  22. Schwarz KB, Witztum J, Schonfeld G, Grundy SM, Connor WE (1979) Elevated cholesterol and bile acid synthesis in a young patient with homozygous familial hypercholesterolemia. J Clin Investig 64:756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miettinen TA, Ahrens EH, Grundy SM (1965) Quantitative isolation and gas–liquid chromatographic analysis of total dietary and fecal neutral steroids. J Lipid Res 6:411–424

    CAS  PubMed  Google Scholar 

  24. Lubinus T, Barnsteiner A, Skurk T, Hauner H, Engel KH (2013) Fate of dietary phytosteryl/-stanyl esters: analysis of individual intact esters in human feces. Eur J Nutr 52:997–1013

    Article  CAS  PubMed  Google Scholar 

  25. Glatz JFC, Schouten FJM, Den Engelsman G, Katan MB (1985) Quantitative determination of neutral steroids and bile acids in human feces by capillary gas–liquid chromatography. In: Beynen AC, Geelen MJH, Katan MB, Schouten JA (eds) Cholesterol metabolism in health and disease studies in the Netherlands. Wageningen, Ponsen & Looijen, pp 103–112

    Google Scholar 

  26. Alvarez-Sala A, Garcia-Llatas G, Cilla A, Barbera R, Sánchez-Siles LM, Lagarda MJ (2016) Impact of lipid components and emulsifiers on plant sterols bioaccessibility from milk-based fruit beverages. J Agric Food Chem 64:5686–5691

    Article  CAS  PubMed  Google Scholar 

  27. García-Llatas G, Vidal C, Cilla A, Barberá R, Lagarda MJ (2012) Simultaneous quantification of serum phytosterols and cholesterol precursors using a simple gas chromatographic method. Eur J Lipid Sci Tech 114:520–526

    Article  Google Scholar 

  28. NIST (2015) Database of organic chemistry compounds: chemistry WebBook. http://webbook.nist.gov/chemistry/. Accessed 5 May 2015

  29. Park SW, Addis PB (1986) Identification and quantitative estimation of oxidized cholesterol derivatives in heated tallow. J Agric Food Chem 34:653–659

    Article  CAS  Google Scholar 

  30. Fraga MJ, Fontecha J, Lozada L, Martínez-Castro I, Juárez M (2000) Composition of the sterol fraction of caprine milk fat by gas chromatography and mass spectrometry. J Dairy Res 67:437–441

    Article  CAS  PubMed  Google Scholar 

  31. Calvo MV, Ramos L, Fontecha J (2003) Determination of cholesterol oxides content in milk products by solid phase extraction and gas chromatography–mass spectrometry. J Sep Sci 26:927–931

    Article  CAS  Google Scholar 

  32. Soupas L, Juntunen L, Säynäjoki S, Lampi AM, Piironen V (2004) GC-MS method for characterization and quantification of sitostanol oxidation products. J Am Oil Chem Soc 81:135–141

    Article  CAS  Google Scholar 

  33. Rogge WF, Medeiros PM, Simoneit BR (2006) Organic marker compounds for surface soil and fugitive dust from open lot dairies and cattle feedlots. Atmos Environ 40:27–49

    Article  CAS  Google Scholar 

  34. Pizzoferrato L, Nicoli S, Lintas C (1993) GC-MS characterization and quantification of sterols and cholesterol oxidation products. Chromatographia 35:269–274

    Article  CAS  Google Scholar 

  35. Dutta PC, Appelqvist LÅ (1997) Studies on phytosterol oxides. I: effect of storage on the content in potato chips prepared in different vegetable oils. J Am Oil Chem Soc 74:647–657

    Article  CAS  Google Scholar 

  36. Bortolomeazzi R, De Zan M, Pizzale L, Conte LS (1999) Mass spectrometry characterization of the 5α-, 7α-, and 7β-hydroxy derivatives of β-sitosterol, campesterol, stigmasterol, and brassicasterol. J Agric Food Chem 47:3069–3074

    Article  CAS  PubMed  Google Scholar 

  37. Guardiola F, Bou R, Boatella J, Codony R (2004) Analysis of sterol oxidation products in foods. J AOAC Int 87:441–466

    CAS  PubMed  Google Scholar 

  38. Johnsson L, Dutta PC (2003) Characterization of side-chain oxidation products of sitosterol and campesterol by chromatographic and spectroscopic methods. J Am Oil Chem Soc 80:767–776

    Article  CAS  Google Scholar 

  39. Plat J, Brzezinka H, Lütjohann D, Mensink RP, von Bergmann K (2001) Oxidized plant sterols in human serum and lipid infusions as measured by combined gas–liquid chromatography–mass spectrometry. J Lipid Res 42:2030–2038

    CAS  PubMed  Google Scholar 

  40. Lampi AM, Juntunen L, Toivo J, Piironen V (2002) Determination of thermo-oxidation products of plant sterols. J Chromatogr B 777:83–92

    Article  CAS  Google Scholar 

  41. Conchillo A, Ansorena D, Astiasarán I (2005) Intensity of lipid oxidation and formation of cholesterol oxidation products during frozen storage of raw and cooked chicken. J Sci Food Agric 85:141–146

    Article  CAS  Google Scholar 

  42. Menéndez-Carreño M, García-Herreros C, Astiasarán I, Ansorena D (2008) Validation of a gas chromatography–mass spectrometry method for the analysis of sterol oxidation products in serum. J Chromatogr B 864:61–68

    Article  Google Scholar 

  43. Lambelet P, Grandgirard A, Gregoire S, Juaneda P, Sebedio JL, Bertoli C (2003) Formation of modified fatty acids and oxyphytosterols during refining of low erucic acid rapeseed oil. J Agric Food Chem 51:4284–4290

    Article  CAS  PubMed  Google Scholar 

  44. Grandgirard A, Martine L, Joffre C, Juaneda P, Berdeaux O (2004) Gas chromatographic separation and mass spectrometric identification of mixtures of oxyphytosterol and oxycholesterol derivatives: application to a phytosterol-enriched food. J Chromatogr A 1040:239–250

    Article  CAS  PubMed  Google Scholar 

  45. ICH (2005) International Conference on Harmonization (ICH) harmonised triplicate guideline Q2 (R1), validation of analytical procedures: text and methodology. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 8 Sept 2015

  46. Wilkins TD, Hackman AS (1974) Two patterns of neutral steroid conversion in the feces of normal North Americans. Cancer Res 34:2250–2254

    CAS  PubMed  Google Scholar 

  47. Perogambros A, Papavassiliou J, Legakis NJ (1982) Fecal neutral sterols in patients with colon cancer. Oncology 39:274–278

    Article  CAS  PubMed  Google Scholar 

  48. Korpela JT, Adlercreutz H (1985) Fecal neutral sterols in omnivorous and vegetarian women. Scand J Gastroenterol 20:1180–1184

    Article  CAS  PubMed  Google Scholar 

  49. Reddy B, Engle A, Katsifis S, Simi B, Bartram HP, Perrino P, Mahan C (1989) Biochemical epidemiology of colon cancer: effect of types of dietary fiber on fecal mutagens, acid, and neutral sterols in healthy subjects. Cancer Res 49:4629–4635

    CAS  PubMed  Google Scholar 

  50. McNamara DJ, Proia A, Miettinen TA (1981) Thin-layer and gas–liquid chromatographic identification of neutral steroids in human and rat feces. J Lipid Res 22:474–484

    CAS  PubMed  Google Scholar 

  51. van Faassen A, Bol J, van Dokkum W, Pikaar NA, Ockhuizen T, Hermus RJ (1987) Bile acids, neutral steroids, and bacteria in feces as affected by a mixed, a lacto-ovovegetarian, and a vegan diet. Am J Clin Nutr 46:962–967

    PubMed  Google Scholar 

  52. Czubayko F, Beumers B, Lammsfuss S, Lütjohann D, von Bergmann K (1991) A simplified micro-method for quantification of fecal excretion of neutral and acidic sterols for outpatient studies in humans. J Lipid Res 32:1861–1867

    CAS  PubMed  Google Scholar 

  53. Gustafsson JÅ, Sjövall J (1969) Identification of 22-, 24-and 26-hydroxycholesterol in the steroid sulphate fraction of faeces from infants. Eur J Biochem 8:467–472

    Article  CAS  PubMed  Google Scholar 

  54. Miettinen TA (1982) Gas–liquid chromatographic determination of fecal neutral sterols using a capillary column. Clin Chim Acta 124:245–248

    Article  CAS  PubMed  Google Scholar 

  55. AOAC (2002) AOAC guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. http://www.aoac.org (http://www.aoac.org/imis15_prod/AOAC_Docs/StandardsDevelopment/SLV_Guidelines_Dietary_Supplements.pdf). Accessed 2 Sept 2015

Download references

Acknowledgements

Thanks are due to the Vitamins Unit of Puerta del Hierro-Majadahonda University Hospital (Madrid, Spain) for providing the feces samples, and to Hero España, S.A., for manufacturing the beverages. This study was part of a project funded by the Spanish Ministry of Economy and Competitiveness (AGL2012-39503-C02-01)(MINECO-FEDER). Maria Cuevas-Tena holds a grant from the Spanish Ministry of Economy and Competitiveness (BES-2013-062705) MINECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amparo Alegría.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas-Tena, M., Alegría, A. & Lagarda, M.J. Determination of Fecal Sterols Following a Diet with and without Plant Sterols. Lipids 52, 871–884 (2017). https://doi.org/10.1007/s11745-017-4286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4286-6

Keywords

Navigation