Skip to main content

Quantification of Short-Chain Fatty Acids in Feces

  • Chapter
  • First Online:
Basic Protocols in Foods and Nutrition

Abstract

Short-chain fatty acids (SCFA) have attracted the attention of researchers due to their positive physiological effects on health. SCFA are involved directly or indirectly in many physiologic responses correlated to the modulation of inflammatory processes, anti-carcinogenic effects, and cardiovascular disease risk-reducing. Besides that, SCFA have a regulatory role in the gut environment and hepatic and whole-body glucose homeostasis. Chemically, SCFA are carboxylic acids with an aliphatic chain containing two to six carbons. They are the primary products of gut fermentation of dietary fiber. Therefore, a quantitative analysis of SCFA in feces is necessary to evaluate the impact of fiber-rich foods on health. This chapter aims to provide some of the principal basic protocols for extracting, separating, and quantifying SCFA in feces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong J et al (2018) Tributyl phosphate assisted hollow-fiber liquid-phase microextraction of short-chain fatty acids in microbial degradation fluid using capillary electrophoresis-contactless coupled conductivity detection. J Pharm Biomed Anal 154:191–197

    Article  CAS  PubMed  Google Scholar 

  2. Marques L et al (2019) Determination of short chain fatty acids in mice feces by capillary electrophoresis. J Braz Chem Soc 30(6):1326–1333

    CAS  Google Scholar 

  3. den Besten G et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  CAS  Google Scholar 

  4. Dobrowolska-Iwanek J et al (2016) Procedure optimization for extracting short-chain fatty acids from human faeces. J Pharm Biomed Anal 124:337–340

    Article  CAS  PubMed  Google Scholar 

  5. Zhou L et al (2021) Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. TrAC Trends Anal Chem 143:116375

    Article  CAS  Google Scholar 

  6. Blanco-Pérez F et al (2021) The dietary fiber pectin: health benefits and potential for the treatment of allergies by modulation of gut microbiota. Curr Allergy Asthma Rep 21(10):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomasova L et al (2021) The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr Metab (Lond) 18(1):72

    Article  Google Scholar 

  8. Cook SI, Sellin JH (1998) Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther 12(6):499–507

    Article  CAS  PubMed  Google Scholar 

  9. Cherrington CA et al (1991) Short-chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J Appl Bacteriol 70(2):161–165

    Article  CAS  PubMed  Google Scholar 

  10. Walker AW et al (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nyman M (2002) Fermentation and bulking capacity of indigestible carbohydrates: the case of inulin and oligofructose. Br J Nutr 87(Suppl 2):S163–S168

    Article  CAS  PubMed  Google Scholar 

  12. Hajiagha MN et al (2022) Gut microbiota and human body interactions; its impact on health: a review. Curr Pharm Biotechnol 23(1):4–14

    Article  PubMed  Google Scholar 

  13. Zhao G, Nyman M, Jönsson JA (2006) Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr 20(8):674–682

    Article  CAS  PubMed  Google Scholar 

  14. Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2(12):1266–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang LL et al (2017) Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gas-chromatography combined with polymerase chain reaction. J Chromatogr B Analyt Technol Biomed Life Sci 1057:70–80

    Article  CAS  PubMed  Google Scholar 

  16. Han X et al (2018) A fast and accurate way to determine short chain fatty acids in mouse feces based on GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 1099:73–82

    Article  CAS  PubMed  Google Scholar 

  17. Ohira H, Tsutsui W, Fujioka Y (2017) Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 24(7):660–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41

    Article  CAS  PubMed  Google Scholar 

  19. Natarajan N et al (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics 48(11):826–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barcenilla A et al (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66(4):1654–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Vuyst L, Leroy F (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149(1):73–80

    Article  CAS  PubMed  Google Scholar 

  22. Minekus M et al (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53(1):108–114

    Article  CAS  PubMed  Google Scholar 

  23. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72

    Article  CAS  PubMed  Google Scholar 

  24. Douny C et al (2019) Development of an analytical method to detect short-chain fatty acids by SPME-GC-MS in samples coming from an in vitro gastrointestinal model. J Chromatogr B Analyt Technol Biomed Life Sci 1124:188–196

    Article  CAS  PubMed  Google Scholar 

  25. Venema K, van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27(1):115–126

    Article  CAS  PubMed  Google Scholar 

  26. De Baere S et al (2013) Development of a HPLC–UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J Pharm Biomed Anal 80:107–115

    Article  CAS  PubMed  Google Scholar 

  27. Horspool LJ, McKellar QA (1991) Determination of short-chain fatty acids in equine caecal liquor by ion exchange high performance liquid chromatography after solid phase extraction. Biomed Chromatogr 5(5):202–206

    Article  CAS  PubMed  Google Scholar 

  28. Pawliszyn J, Vuckovic D, Risticevic S (2012) Handbook of solid phase microextraction. Elsevier

    Google Scholar 

  29. Fiorini D et al (2016) A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces. Anal Biochem 508:12–14

    Article  CAS  PubMed  Google Scholar 

  30. Dixon E et al (2011) Solid-phase microextraction and the human fecal VOC metabolome. PLoS One 6(4):e18471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prosen H (2014) Applications of liquid-phase microextraction in the sample preparation of environmental solid samples. Molecules 19(5):6776–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan L et al (2005) Headspace liquid-phase microextraction of short-chain fatty acids in plasma, and gas chromatography with flame ionization detection. Chromatographia 62(5):305–309

    Article  CAS  Google Scholar 

  33. Bizkarguenaga E et al (2013) In-port derivatization after sorptive extractions. J Chromatogr A 1296:36–46

    Article  CAS  PubMed  Google Scholar 

  34. Parkinson D (2012) Analytical derivatization techniques. In: Pawliszyn J (ed) Comprehensive sampling and sample preparation. Academic Press, pp 559–595

    Chapter  Google Scholar 

  35. He L et al (2018) Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1092:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scortichini S et al (2020) Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids. J Chromatogr B Analyt Technol Biomed Life Sci 1143:121972

    Article  CAS  PubMed  Google Scholar 

  37. Hoving LR et al (2018) GC-MS analysis of short-chain fatty acids in feces, cecum content, and blood samples. Methods Mol Biol 1730:247–256

    Article  CAS  PubMed  Google Scholar 

  38. Liebisch G et al (2019) Quantification of fecal short chain fatty acids by liquid chromatography tandem mass spectrometry-investigation of pre-analytic stability. Biomol Ther 9(4):121

    Google Scholar 

  39. Primec M, Mičetić-Turk D, Langerholc T (2017) Analysis of short-chain fatty acids in human feces: a scoping review. Anal Biochem 526:9–21

    Article  CAS  PubMed  Google Scholar 

  40. Garcia A et al (2008) Capillary electrophoresis for short chain organic acids in faeces Reference values in a Mediterranean elderly population. J Pharm Biomed Anal 46(2):356–361

    Article  CAS  PubMed  Google Scholar 

  41. IOFI Working Group on Methods of Analysis (2011) Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the Working Group on Methods of Analysis of the International Organization of the Flavor Industry (IOFI). Flavour Fragr J 26(5):297–299

    Google Scholar 

  42. National Health Surveillance Agency (2003) Guide for validation of analytical and bioanalytical methods analytical methods. Resolution – RE No. 899

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the São Paulo Research Foundation (FAPESP—Ph.D. grant for M.R.V.B., 2019/18748-8) and to Coordination for the Improvement of Higher Education Personnel (CAPES Foundation—Brazil) Financing Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislau Bogusz Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertolo, M.R.V., Bogusz Junior, S. (2022). Quantification of Short-Chain Fatty Acids in Feces. In: Betim Cazarin, C.B. (eds) Basic Protocols in Foods and Nutrition. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2345-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2345-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2344-2

  • Online ISBN: 978-1-0716-2345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics