Skip to main content
Log in

Inhibition of Polyunsaturated Fatty Acids Synthesis Decreases Growth Rate and Membrane Fluidity of Rhodosporidium kratochvilovae at Low Temperature

  • Original Article
  • Published:
Lipids

Abstract

The intention of this study was to investigate the role of polyunsaturated fatty acids (PUFA) in the cold adaptation of Rhodosporidium kratochvilovae YM25235 by knockout of the Δ1215-fatty acid desaturase gene (RKD12) to inactivate Δ1215-fatty acid desaturase. Polymerase chain reaction (PCR) amplification was used to detect the genomic structure of RKD12 gene in YM25235. The RKD12 gene was knocked out by DNA homologous recombination to inhibit the biosynthesis of PUFA. Then, the contents of linoleic acid (LNA) and α-linolenic acid (ALA) after gene knockout were investigated using a gas chromatography-mass spectrometer, followed by determination of the growth rate and membrane fluidity of YM25235 at low temperature. After PCR amplification, a 1611 bp genomic fragment was amplified from YM25235. When the RKD12 gene was knocked out, the contents of LNA and ALA in YM25235 significantly decreased. The growth rate and membrane fluidity of YM25235 decreased significantly at low temperature. Inhibition of PUFA biosynthesis by RKD12 gene knockout influenced cold adaptation of YM25235 by decreasing the PUFA content in cell membranes and reducing the growth rate and membrane fluidity of YM25235 at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PUFA:

Polyunsaturated fatty acids

PCR:

Polymerase chain reaction

LNA:

Linoleic acid

ALA:

α-Linolenic acid

FAME:

Fatty acid methyl esters

YPD:

Yeast extract peptone dextrose

ANS:

1-Anilinonaphthalene-8-sulphonate

SD:

Standard deviation

References

  1. Aguilar PS, Mendoza DD (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514

    Article  CAS  PubMed  Google Scholar 

  2. Sampath H, Ntambi JM (1998) Polyunsaturated fatty acid regulation of genes of lipid metabolism. J Nutr 128:273–278

    Google Scholar 

  3. Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  PubMed  Google Scholar 

  4. Ntambi JM, Bené H (2001) Polyunsaturated fatty acid regulation of gene expression. J Mol Neurosci 16:273–278

    Article  CAS  PubMed  Google Scholar 

  5. Hagve TA (1988) Effects of unsaturated fatty acids on cell membrane functions. Scand J Clin Lab Invest 48:381–388

    Article  CAS  PubMed  Google Scholar 

  6. Buček A, Matoušková P, Sychrová H, Pichová I, Hrušková-Heidingsfeldová O (2014) Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PLoS One 9:e93322

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids 68:97–106

    Article  CAS  PubMed  Google Scholar 

  8. Velly H, Bouix M, Passot S, Penicaud C, Beinsteiner H, Ghorbal S, Lieben P, Fonseca F (2015) Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161. Appl Microbiol Biotechnol 99:907–918

    Article  CAS  PubMed  Google Scholar 

  9. Mykytczuk NCS, Trevors JT, Twine SM, Ferroni GD, Leduc LG (2010) Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures. Arch Microbiol 192:1005–1018

    Article  CAS  PubMed  Google Scholar 

  10. Mohamed Badaoui Najjar MC, Montville Thomas J (2007) Changes in Listeria monocytogenes membrane fluidity in response to temperature stress. Appl Environ Microbiol 73:6429–6435

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang Q, Yang ZJ, Zhao RL, Wei YL, Lin LB, Xiu-Lin JI (2015) Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. Yeast 20:683–690

    Google Scholar 

  12. Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    Article  CAS  Google Scholar 

  13. Cui J, He S, Ji X, Lin L, Wei Y, Qi Z (2016) Identification and characterization of a novel bifunctional Δ 12/Δ 15 -fatty acid desaturase gene from Rhodosporidium kratochvilovae. Biotech Lett 38:1155–1164

    Article  CAS  Google Scholar 

  14. Liu Y, Koh CM, Sun L, Hlaing MM, Du M, Peng N, Ji L (2013) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 97:719–729

    Article  CAS  PubMed  Google Scholar 

  15. Grebowski J, Krokosz A, Puchala M (2013) Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene. Biochem Biophys Acta 1828:241–248

    Article  CAS  PubMed  Google Scholar 

  16. Mccartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, Mcnew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  CAS  PubMed  Google Scholar 

  17. Meesapyodsuk D, Qiu X (2012) The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 47:227–237

    Article  CAS  PubMed  Google Scholar 

  18. Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochem Biophys Acta 1394:3–15

    Article  CAS  PubMed  Google Scholar 

  19. Mm PN, Jl BJW (2000) Identification and characterization of an animal Delta(12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 376:399–408

    Article  Google Scholar 

  20. Peyou-Ndi MM, Watts JL, Browse J (2000) Identification and characterization of an animal Δ 12 fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 376:399–408

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Wang X, Gai J, Yu D (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Zhang S, Pötter M, Sun W, Li L, Yang X, Jiao X, Zhao ZK (2016) Overexpression of Δ12-fatty acid desaturase in the oleaginous yeast Rhodosporidium toruloides for production of linoleic acid-rich lipids. Appl Biochem Biotechnol 180:1497–1507

    Article  CAS  PubMed  Google Scholar 

  23. Sun R, Gao L, Yu X, Zheng Y, Li D, Wang X (2016) Identification of a Δ12 fatty acid desaturase from oil palm (Elaeis guineensis Jacq.) involved in the biosynthesis of linoleic acid by heterologous expression in Saccharomyces cerevisiae. Gene 591:21–26

    Article  CAS  PubMed  Google Scholar 

  24. Boardman L, Sørensen JG, Johnson SA, Terblanche JS (2011) Interactions between controlled atmospheres and low temperature tolerance: a review of biochemical mechanisms. Front Physiol 2:92

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  CAS  PubMed  Google Scholar 

  26. Kim EJ, Lee JK (2015) Effect of changes in the composition of cellular fatty acids on membrane fluidity of Rhodobacter sphaeroides. J Microbiol Biotechnol

  27. He LU, Zhang XK, Li JN, Lei TG (2005) Effects of adversity on fatty acid composition in fungal membrane. J Microbiol 25:1–3

    Google Scholar 

  28. Singer SJ (1974) The molecular organization of membranes. Annu Rev Biochem 16:805–833

    Article  Google Scholar 

  29. Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beney L, Gervais P (2001) Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl Microbiol Biotechnol 57:34–42

    Article  CAS  PubMed  Google Scholar 

  31. Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand, France) 50:631–642

  32. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Q, Wang Z, Shi-Wu HE, Xiu-Ling JI, Lin LB, Wei YL (2012) Effects of polyunsaturated fatty acids on the cold adaptation of microorganisms. Chin Bull Life Sci

  34. Hamamoto T, Takata N, Kudo T, Horikoshi K (1994) Effect of temperature and growth phase on fatty acid composition of the psychrophilic Vibrio sp. strain no. 5710. FEMS Microbiol Lett 119:77–81

    Article  CAS  Google Scholar 

  35. Da SM, Golovina EA, Hoekstra FA, Rombouts FM, Abee T (2003) Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 69:5826–5832

    Article  Google Scholar 

  36. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  37. Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Ethics declarations

Funding

This study was supported by a grant from the National Natural Science Foundation of China (Nos. 31160016, 31660454 and 31260034).

Conflict of interest

The authors declare that there is no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, W., Nian, H. et al. Inhibition of Polyunsaturated Fatty Acids Synthesis Decreases Growth Rate and Membrane Fluidity of Rhodosporidium kratochvilovae at Low Temperature. Lipids 52, 729–735 (2017). https://doi.org/10.1007/s11745-017-4273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4273-y

Keywords

Navigation