Skip to main content
Log in

Overexpression of Δ12-Fatty Acid Desaturase in the Oleaginous Yeast Rhodosporidium toruloides for Production of Linoleic Acid-Rich Lipids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Under nutrient-limited conditions, the red yeast Rhodosporidium toruloides can accumulate neutral lipids, of which the compositional fatty acids are mainly saturated and mono-unsaturated ones with 16 or 18 carbon atoms. To improve the linoleic acid content in the lipids, we enabled galactose-inducible expression of the gene encoding Δ12-fatty acid desaturase (FADS) from Mortierella alpina or Fusarium verticillioides by integration of the corresponding expression cassettes into the genome of R. toruloides haploid and diploid strains. The relative linoleic acid content increased up to fivefold and the final linoleic acid titer reached 1.3 g/L under flask culture conditions. Our results suggested that R. toruloides may be further explored as cell factory for production of high-valued lipids and other fatty acid derivatives as bio-based chemicals and fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aguilar, P. S., & de Mendoza, D. (2006). Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Molecular Microbiology, 62, 1507–1514.

    Article  CAS  Google Scholar 

  2. Clemente, T. E., & Cahoon, E. B. (2009). Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiology, 151, 1030–1040.

    Article  CAS  Google Scholar 

  3. Chen, Y., Cui, Q., Xu, Y., Yang, S., Gao, M., & Wang, Y. (2015). Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana. Molecular Genetics and Genomics, 290, 1605–1613.

    Article  CAS  Google Scholar 

  4. Sakuradani, E., Kobayashi, M., Ashikari, T., & Shimizu, S. (1999). Identification of Delta12-fatty acid desaturase from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. European Journal of Biochemistry, 261, 812–820.

    Article  CAS  Google Scholar 

  5. Huang, Y. S., Chaudhary, S., Thurmond, J. M., Bobik Jr., E. G., Yuan, L., Chan, G. M., Kirchner, S. J., Mukerji, P., & Knutzon, D. S. (1999). Cloning of delta12- and delta6-desaturases from Mortierella Alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids, 34, 649–659.

    Article  CAS  Google Scholar 

  6. Kainou, K., Kamisaka, Y., Kimura, K., & Uemura, H. (2006). Isolation of Delta12 and omega3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and alpha-linolenic acids in Saccharomyces cerevisiae. Yeast, 23, 605–612.

    Article  CAS  Google Scholar 

  7. Yazawa, H., Iwahashi, H., Kamisaka, Y., Kimura, K., & Uemura, H. (2009). Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yeast, 26, 167–184.

    Article  CAS  Google Scholar 

  8. Dyer, J. M., Chapital, D. C., Kuan, J. W., Mullen, R. T., & Pepperman, A. B. (2002). Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Applied Microbiology and Biotechnology, 59, 224–230.

    Article  CAS  Google Scholar 

  9. Blazeck, J., Liu, L., Redden, H., & Alper, H. (2011). Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Applied and Environmental Microbiology, 77, 7905–7914.

    Article  CAS  Google Scholar 

  10. Chen, D. C., Beckerich, J. M., & Gaillardin, C. (1997). One-step transformation of the dimorphic yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 48, 232–235.

    Article  CAS  Google Scholar 

  11. Fickers, P., Le Dall, M. T., Gaillardin, C., Thonart, P., & Nicaud, J. M. (2003). New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. Journal of Microbiological Methods, 55, 727–737.

    Article  CAS  Google Scholar 

  12. Liu, L. Q., Otoupal, P., Pan, A., & Alper, H. S. (2014). Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function. FEMS Yeast Research, 14, 1124–1127.

    CAS  Google Scholar 

  13. Wang, J. H., Hung, W., & Tsai, S. H. (2011). High efficiency transformation by electroporation of Yarrowia lipolytica. Journal of Microbiology, 49, 469–472.

    Article  Google Scholar 

  14. Bommareddy, R. R., Sabra, W., Maheshwari, G., & Zeng, A. P. (2015). Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microbial Cell Factories, 14, 36.

    Article  Google Scholar 

  15. Lane, S., Zhang, S., Wei, N., Rao, C., & Jin, Y. S. (2014). Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnology and Bioengineering, 112, 1012–1022.

    Article  Google Scholar 

  16. Li, Y. H., Zhao, Z. B., & Bai, F. W. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41, 312–317.

    Article  Google Scholar 

  17. Kumar, S., Kushwaha, H., Bachhawat, A. K., Raghava, G. P., & Ganesan, K. (2012). Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryotic Cell, 11, 1083–1084.

    Article  Google Scholar 

  18. Zhu, Z., Zhang, S., Liu, H., Shen, H., Lin, X., Yang, F., et al. (2012). A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nature Communications, 3, 1112.

    Article  Google Scholar 

  19. Koh, C. M., Liu, Y., Moehninsi, Du, M., & Ji, L. (2014). Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiology, 14, 50.

    Article  Google Scholar 

  20. Lin, X., Wang, Y., Zhang, S., Zhu, Z., Zhou, Y. J., Yang, F., Sun, W., Wang, X., & Zhao, Z. K. (2014). Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 14, 547–555.

    Article  CAS  Google Scholar 

  21. Liu, Y., Koh, C. M., Sun, L., Hlaing, M. M., Du, M., Peng, N., & Ji, L. (2013). Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Applied Microbiology and Biotechnology, 97, 719–729.

    Article  CAS  Google Scholar 

  22. Damude, H. G., Zhang, H., Farrall, L., Ripp, K. G., Tomb, J. F., Hollerbach, D., & Yadav, N. S. (2006). Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proceedings of the National Academy of Sciences of the United States of America, 103, 9446–9451.

    Article  CAS  Google Scholar 

  23. Lazo, G.R., Stein, P.A., Ludwig, R.A. (1991). A DNA transformation competent Arabidopsis genomic library in AgrobacteriumNat Biotechnol9, 963–967.

  24. Bundock, P., den Dulk-Ras, A., Beijersbergen, A., & Hooykaas, P. J. (1995). Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO Journal, 14, 3206–3214.

    CAS  Google Scholar 

  25. Ma, S., Wang, Y., Jiao, X., Zhang, S., & Zhao, Z. K. (2015). Phosphate starvation derepressed expression vector for engineering oleaginous yeast Rhodosporidium toruloides. Acta Microbiologica Sinica, 55, 1505–1511.

    Google Scholar 

  26. Van, D., & Lowe, J. (2006). RF cloning: a restriction-free method for inserting target genes into plasmids. Journal of Biochemical and Biophysical Methods, 67, 67–74.

    Article  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning a laboratory manual, 3rd edi, volume 1 (pp. 91–92). BeiJing: Science Press.

    Google Scholar 

  28. Wang, Y., Lin, X., Zhang, S., Sun, W., Ma, S., & Zhao, Z. K. (2016). Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides. Yeast, 33, 99–106.

    Article  CAS  Google Scholar 

  29. Liu, H., Zhao, X., Wang, F., Li, Y., Jiang, X., Ye, M., Zhao, Z. K., & Zou, H. (2009). Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast, 26, 553–566.

    Article  Google Scholar 

  30. Certik, M., & Shimizu, S. (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. Journal of Bioscience and Bioengineering, 87, 1–14.

    Article  CAS  Google Scholar 

  31. Uemura, H. (2012). Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Applied Microbiology and Biotechnology, 95, 1–12.

    Article  CAS  Google Scholar 

  32. Xue, Z., Sharpe, P. L., Hong, S. P., Yadav, N. S., Xie, D., Short, D. R., et al. (2013). Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 31, 734–740.

    Article  CAS  Google Scholar 

  33. Bucek, A., Matouskova, P., Sychrova, H., Pichova, I., & Hruskova-Heidingsfeldova, O. (2014). Delta12-fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PloS One, 9, e93322.

    Article  Google Scholar 

  34. Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90, 1219–1227.

    Article  CAS  Google Scholar 

  35. Yu, A. Q., Pratomo Juwono, N. K., Leong, S. S., & Chang, M. W. (2014). Production of fatty acid-derived valuable chemicals in synthetic microbes. Frontiers in Bioengineering and Biotechnology, 2, 78.

    Article  Google Scholar 

  36. Hu, C., Zhao, X., Zhao, J., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100, 4843–4847.

    Article  CAS  Google Scholar 

  37. Huang, Q., Wang, Q., Gong, Z., Jin, G., Shen, H., Xiao, S., Xie, H., Ye, S., Wang, J., & Zhao, Z. K. (2013). Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 130, 339–344.

    Article  CAS  Google Scholar 

  38. Zhao, X., Wu, S., Hu, C., Wang, Q., Hua, Y., & Zhao, Z. K. (2010). Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. Journal of Industrial Microbiology & Biotechnology, 37, 581–585.

    Article  CAS  Google Scholar 

  39. Fillet, S., Gibert, J., Suarez, B., Lara, A., Ronchel, C., & Adrio, J. L. (2015). Fatty alcohols production by oleaginous yeast. Journal of Industrial Microbiology & Biotechnology, 42, 1463–1472.

    Article  CAS  Google Scholar 

  40. Zhang, S., Skerker, J. M., Rutter, C. D., Maurer, M. J., Arkin, A. P., & Rao, C. V. (2016). Engineering Rhodosporidium toruloides for increased lipid production. Biotechnology and Bioengineering, 113, 1056–1066.

    Article  CAS  Google Scholar 

  41. Rodriguez-Vargas, S., Sanchez-Garcia, A., Martinez-Rivas, J. M., Prieto, J. A., & Randez-Gil, F. (2007). Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Applied and Environmental Microbiology, 73, 110–116.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professors Xiaofeng Dai and Tianhong Wang for providing us Agrobacterium tumefaciens AGL1. This work was supported by the National Natural Science Foundation of China (nos. 31370128, 21325627).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sufang Zhang or Zongbao K. Zhao.

Electronic supplementary material

ESM 1

(DOCX 83 kb)

ESM 2

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, S., Pötter, M. et al. Overexpression of Δ12-Fatty Acid Desaturase in the Oleaginous Yeast Rhodosporidium toruloides for Production of Linoleic Acid-Rich Lipids. Appl Biochem Biotechnol 180, 1497–1507 (2016). https://doi.org/10.1007/s12010-016-2182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2182-9

Keywords

Navigation