Skip to main content
Log in

U18666A Treatment Results in Cholesterol Accumulation, Reduced Na+, K+-ATPase Activity, and Increased Oxidative Stress in Rat Cortical Astrocytes

  • Original Article
  • Published:
Lipids

Abstract

The objective of this study was to determine the effect of U18666A, an inhibitor of cholesterol synthesis and its intracellular transport, on oxidative stress parameters in cortical astrocytes cultured from Wistar rats (0–3 days old). The cultures were incubated with U18666A (0.25 µg/mL) for 48 h, conditions that are considered ideal to mimic Niemann–Pick type C disease. A variety of indicators of oxidative stress were measured. U18666A treatment increased cholesterol 2-fold in treated compared to control astrocytes. Oxidative stress was significantly elevated in treated cells as demonstrated by a 1.7-fold increase in thiobarbituric acid reactive substances, a 60 % decrease is sulfhydral groups, and a 3.7-fold increase in carbonyl groups, indicative of increased lipid and protein oxidation following U18666A treatment. Consistent with these changes, both catalase and superoxide dismutase activities were significantly reduced nearly 50 % in treated compared to control astrocytes. Collectively, these change resulted in a 50 % reduction in Na+, K+-ATPase specific activity following U18666A treatment, suggesting a significant alteration in its plasma membrane environment. Overall, these changes indicate that U18666A treatment results in increased cholesterol levels and an increased level of oxidative stress in cortical astrocytes, consistent with what is observed in Niemann–Pick type C disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NPC:

Niemann–Pick type C

U18666A:

3-β-[2-(Diethylamino)ethoxy]androst-5-en-17-one

ROS:

Reactive oxygen species

CNS:

Central nervous system

ATP:

Adenosine triphosphate

TBARS:

Thiobarbituric acid reactive substances

SOD:

Superoxide dismutase

CAT:

Catalase

H2O2 :

Hydrogen peroxide

NO:

Nitric oxide

References

  1. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF, Ohno K, Zeigler MR, Carmi J, Sokol J, Markie D, O’Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA (1997) Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  CAS  PubMed  Google Scholar 

  2. Millard EE, Gale SE, Dudley N, Zhang J, Schaffer JE, Ory DS (2005) The sterol sensing domain of the Niemann–Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol. J Biol Chem 280:28581–28590

    Article  CAS  PubMed  Google Scholar 

  3. Vance JE, Peake KB (2011) Function of the Niemann–Pick type C proteins and their bypass by cyclodextrin. Curr Opin Lipidol 22:204–209

    Article  CAS  PubMed  Google Scholar 

  4. Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol 6:765–772

    Article  CAS  PubMed  Google Scholar 

  5. Imrie J, Dasgupta S, Besley GT, Harris C, Heptinstall L, Knight S, Vanier MT, Fensom AH, Ward C, Jacklin E, Whitehouse C, Wraith JE (2007) The natural history of Niemann–Pick disease type C in the UK. J Inherit Metab Dis 30:51–59

    Article  CAS  PubMed  Google Scholar 

  6. Vanier MT (2010) Niemann–Pick disease type C. Orphanet J Rare Dis 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sáez JP, Orellana JA, Vega-Riveros N, Figueroa VA, Hernández Castro JF, Klein AD, Jiang JX, Zanlungo S, Sáez JC (2013) Disruption in connexin-based communication is associated with intracellular Ca2+ signal alterations in astrocytes from Niemann–Pick type C mice. PLoS ONE 15:1–12

    Google Scholar 

  8. Mattsson N, Olsson M, Gustavson MK, Kosicek M, Malnar M, Mansson J-E, Blompvist M, Gobom J, Andreasson U, Brinkmalm G, Vite C, Hecimovic S, Hastings C, Blennow K, Zetterberg H, Portelius E (2012) Amyloid-β metabolism in Niemann–Pick C disease models and patients. Metab Brain Dis 27:573–585

    Article  CAS  PubMed  Google Scholar 

  9. Lange Y, Ye J, Rigney M, Steck TL (2002) Dynamics of lysosomal cholesterol in Niemann–Pick C and normal human fibroblasts. J Lipid Res 43:198–204

    CAS  PubMed  Google Scholar 

  10. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  PubMed  Google Scholar 

  11. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, vol 1. Oxford University Press, New York, p 851

    Google Scholar 

  12. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(72):547–581

    CAS  PubMed  Google Scholar 

  13. Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  14. Grisar T (1984) Glial and neuronal Na+–K+-pump in epilepsy. Ann Neurol 16:128–134

    Article  Google Scholar 

  15. Yu A, Dayan P (2003) Expected and unexpected uncertainty: ACh and NE in the neocortex. Accepted by NIPS

  16. Renkawek K, De Jong WW, Merck KB, Frenken CW, Van Workum FP, Bosman GJ (1992) Alpha B-crystallin is present in reactive glia in Creutzfeldt–Jakob disease. Acta Neuropathol 83:324–327

    Article  CAS  PubMed  Google Scholar 

  17. Hattori N, Kitada T, Matsumine H, Asakawa Y, Yoshino H, Kobayashi T, Yokochi M, Yoritaka A, Kondo T, Kuzuhara S, Nakamura S, Shimizu N, Mizuno Y (1998) Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 44:935–941

    Article  CAS  PubMed  Google Scholar 

  18. Aperia A (2007) New roles for an old enzyme: Na+, K+-ATPase emerges as an interesting drug target. J Intern Med 261:45–52

    Google Scholar 

  19. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:31–71

    Article  Google Scholar 

  20. Kaplan JH (2002) Biochemistry of Na+, K+-ATPase. Ann Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  21. Jorgensen PL, Hakansson KO, Karlish SJD (2003) Structure and mechanism of: functional sites and their interactions. Ann Rev Physiol 65:817–849

    Article  CAS  Google Scholar 

  22. Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP (2003) Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116:2099–2110

    Article  CAS  PubMed  Google Scholar 

  23. Copetti-Santos D, Garcia CS, Andrade CV, Daitx VV, Moraes VC, Rohden F, Coelho JC (2015) Effect of U18666A on beta-glucosidase, sphingomyelinase, and beta-galactosidase activities in astrocytes of young rats. J Membr Biol 248:215–222

    Article  Google Scholar 

  24. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  25. Reznick AZ, Packer L (1994) Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  26. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:14114–14115

    Google Scholar 

  27. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  28. Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233:250–258

    Article  CAS  PubMed  Google Scholar 

  29. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  31. Rojas DB, Andrade RB, Gemelli T, Oliveira LS, Campos AG, Dutra-Filho CS, Wannmacher CMD (2012) Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryl transfer network in cerebral cortex and hippocampus of the offspring. Metab Brain Dis 27:595–603

    Article  CAS  PubMed  Google Scholar 

  32. Iturriaga C, Pineda M, Fernandez-Valero EM, Vanier MT, Coll MJ (2006) Niemann–Pick C disease in Spain: clinical spectrum and development disability scale. J Neurol Sci 249:1–6

    Article  CAS  PubMed  Google Scholar 

  33. Patterson MC (2001) Niemann–Pick disease type C: a lipid trafficking disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Vogelstein B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3611–3633

    Google Scholar 

  34. Héron B, Valayannopoulos V, Baruteau J, Chabro B, Ogier H, Latour P, Dobbelaere D, Eyer D, Labarthe F, Maurey H, Cuisset JM, de Villemeur TB, Sedel F, Vanier MT (2012) Miglustat therapy in the French cohort of paediatric patients with Niemann–Pick disease type C. Orphanet J Rare Dis 7:36

    Article  PubMed Central  PubMed  Google Scholar 

  35. Patterson MC, Vecchio D, Jacklin E, Abel L, Chadha-Boreham H, Luzy C, Giorgino R, Wraith JE (2010) Long-term miglustat therapy in children with Niemann–Pick disease type C. J Child Neurol 25(3):300–305

    Article  PubMed  Google Scholar 

  36. Pineda M, Perez-Poyato MS, O’Callaghan M, Vilaseca MA, Pocovi M, Domingo R, Portal LR, Pérez AV, Temudo T, Gaspar A, Peñas JJ, Roldán S, Fumero LM, de la Barca OB, Silva MT, Macías-Vidal J, Coll MJ (2010) Clinical experience with miglustat therapy in pediatric patients with Niemann–Pick disease type C: a case series. Mol Genet Metab 99:358–366

    Article  CAS  PubMed  Google Scholar 

  37. Leonard MG, Briyal S, Gulati A (2012) Endothelin B receptor agonist, IRL-31620, provides long-term neuroprotection in cerebral ischemia in rats. Brain Res 29:14–23

    Article  Google Scholar 

  38. Milusheva E, Baranyi M, Kormos E, Hracskó Z, Sylvester Vizi E, Sperlágh B (2010) The effect of antiparkinsonian drugs on oxidative stress induced pathological [3H] dopamine efflux after in vitro rotenone exposure in rat striatal slices. Neuropharmacology 58:816–825

    Article  CAS  PubMed  Google Scholar 

  39. Cenedella RJ (2009) Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 44:477–487

    Article  CAS  PubMed  Google Scholar 

  40. Zampieri S, Mellon SH, Butters TD, Nevyjel M, Covey DF, Bembi D, Dardis A (2009) Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 13:3786–3796

    Article  PubMed Central  PubMed  Google Scholar 

  41. Smith AJ, Smith RA, Stone TW (2009) 5-Hydroxyanthranilic acid, a tryptophan metabolite, generates oxidative stress and neuronal death via p38 activation in cultured cerebellar granule neurones. Neurotox Res 15:303–310

    Article  CAS  PubMed  Google Scholar 

  42. Wei T, Zhao X, Hou J, Ogata K, Sakaue T, Mori A, Xin W (2003) The antioxidant ESeroS-GS inhibits NO production and prevents oxidative stress in astrocytes. Biochem Pharmacol 66:83–91

    Article  CAS  PubMed  Google Scholar 

  43. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  44. Duncan AJ, Heales SJ (2005) Nitric oxide and neurological disorders. Mol Aspects Med 26:67–96

    Article  CAS  PubMed  Google Scholar 

  45. Contestabile A (2000) Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res 32:476–509

    Article  CAS  Google Scholar 

  46. Dawson VL (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci 88:6368–6371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74:2213–2216

    Article  CAS  PubMed  Google Scholar 

  48. Matthews RT, Beal MF, Fallon J, Fedorchak K, Huang PL, Fishman MC, Hyman BT (1997) MPP+ induced substantia nigra degeneration is attenuated in nNOS knockout in mice. Neurobiol Dis 4:114–121

    Article  CAS  PubMed  Google Scholar 

  49. Van Muiswinkel FL, Drukarch B, Steinbusch HW, De Vente J (1998) Sustained pharmacological inhibition of nitric oxide synthase does not affect the survival of intrastriatal rat fetal mesencephalic transplants. Brain Res 792:48–58

    Article  PubMed  Google Scholar 

  50. Zhang L, Dawson VL, Dawson TM (2006) Role of nitric oxide in Parkinson’s disease. Pharmacol Ther 109:33–41

    Article  CAS  PubMed  Google Scholar 

  51. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  52. Remacle J, Michiels C, Raes M (1992) The importance of antioxidant enzymes in cellular aging and degeneration. EXS 62:99–108

    CAS  PubMed  Google Scholar 

  53. Medeiros MC, Mello A, Gemelli T, Teixeira C, de Almeida M, de Andrade RB, Wannmacher CMD, Guerra RB, Gomez R, Funchal C (2012) Effect of chronic administration of the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on oxidative stress in different brain areas of rats. Neurochem Res 37:928–934

    Article  CAS  PubMed  Google Scholar 

  54. Funchal C, Carvalho CA, Gemelli T, Centeno AS, Guerra RB, Salvador M, Dani C, Coitinho A, Gomez R (2010) Effect of acute administration of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex, hippocampus, and cerebellum of rats. Cell Mol Neurobiol 30:1135–1142

    Article  CAS  PubMed  Google Scholar 

  55. Hershko C (1989) Mechanism of iron toxicity and its possible role in red cell membrane damage. Semin Hematol 26:277–285

    CAS  PubMed  Google Scholar 

  56. Bulkley GB (1983) The role of oxygen free radicals in human disease processes. Surgery 94:407–411

    CAS  PubMed  Google Scholar 

  57. Penz J, Gemelli T, Carvalho CA, Guerra RB, Oliboni L, Salvador M, Dani C, Araújo AS, Funchal C (2009) Effect of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex of rats. Food Chem Toxicol 47:745–751

    Article  CAS  PubMed  Google Scholar 

  58. Ribas GS, Pires R, Coelho JC, Rodrigues D, Mescka CP, Vanzin CS, Biancini GB, Negretto G, Wayhs CA, Wajner M, Vargas CR (2012) Oxidative stress in Niemann–Pick type C patients: a protective role of N-butyl-deoxynojirimycin therapy. Int J Dev Neurosci 30:439–444

    Article  CAS  PubMed  Google Scholar 

  59. Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    Article  PubMed  Google Scholar 

  60. Delledonne M, Polverari A, Murgia I (2003) The functions of nitric oxide mediated signaling and changes in gene expression during the hypersensitive response. Antioxid Redox Signal 5:33–41

    Article  CAS  PubMed  Google Scholar 

  61. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  62. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  CAS  PubMed  Google Scholar 

  63. Cornelius F (1995) Phosphorylation/dephosphorylation of reconstituted shark Na+, K+-ATPase: one phosphorylation site per protomer. Biochim Biophys Acta 1235:197–204

    Article  PubMed  Google Scholar 

  64. Cornelius F, Mahmmoud YA, Christien HR (2001) Modulation of Na+, K+-ATPase by associated small transmembrane regulatory proteins and by lipids. J Bioenerg Biomembr 33:415–423

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Copetti-Santos.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copetti-Santos, D., Moraes, V., Weiler, D.F. et al. U18666A Treatment Results in Cholesterol Accumulation, Reduced Na+, K+-ATPase Activity, and Increased Oxidative Stress in Rat Cortical Astrocytes. Lipids 50, 937–944 (2015). https://doi.org/10.1007/s11745-015-4062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4062-4

Keywords

Navigation