Skip to main content
Log in

5-Hydroxyanthranilic Acid, a Tryptophan Metabolite, Generates Oxidative Stress and Neuronal Death via p38 Activation in Cultured Cerebellar Granule Neurones

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The essential amino acid tryptophan is primarily metabolised through the kynurenine pathway, some components of which may be neurotoxic. We have now examined the potential toxicity of several kynurenine metabolites in relation to the generation of oxidative stress and activation of cell death signalling pathways in cultured cerebellar granule neurons. 3-Hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HAA) and 5-hydroxyanthranilic acid (5HAA) induced cell death which increased with exposure time and compound concentration. The neurotoxic effects of 3HK, 3HAA and 5HAA were prevented by catalase, but not by superoxide dismutase. In addition, Western blot analysis demonstrated p38 activation due to 3HK or 5HAA treatment, although caspase-3 activation was not evident in either case. The results indicate that kynurenine metabolites can be neurotoxic via a caspase-3 independent mechanism, and that the minor metabolite 5HAA is as potent a toxin as the better documented compounds 3HK and 3HAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Behan WMH, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128:1754–1760

    Article  PubMed  CAS  Google Scholar 

  • Bellac CL, Coimbra RS, Christen S, Leib SL (2006) Pneumococcal meningitis causes accumulation of neurotoxic kynurenine metabolites in brain regions prone to injury. Neurobiol Dis 24:395–402

    Article  PubMed  CAS  Google Scholar 

  • Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073

    Article  PubMed  CAS  Google Scholar 

  • Chaparro-Huerta V, Rivera-Cervantes MC, Flores-Soto ME, Gómez-Pinedo U, Beas-Zárate C (2005) Proinflammatory cytokines and apoptosis following glutamate-induced excitotoxicity mediated by p38 MAPK in the hippocampus of neonatal rats. J Neuroimmunol 165:53–62

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A, Meli E, Moroni F (2001) Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J Neurochem 77:1310–1318

    Article  PubMed  CAS  Google Scholar 

  • Clark CJ, Mackay GM, Smythe GA, Bustamante S, Stone TW, Phillips RS (2005) Prolonged survival of a murine model of cerebral malaria by kynurenine pathway inhibition. Infect Immun 73:5249–5251

    Article  PubMed  CAS  Google Scholar 

  • Eastman CL, Guilarte TR (1989) Cyto-toxicity of 3-hydroxykynurenine in a neuronal hybrid cell line. Brain Res 495:225–231

    Article  PubMed  CAS  Google Scholar 

  • Eastman CL, Guilarte TR (1990) The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 15:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Fatokun AA, Stone TW, Smith RA (2007) Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: mechanisms and protection by adenosine receptor ligands. Brain Res 1132:193–202

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M (2001) Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Mol Brain Res 94:48–58

    Article  PubMed  CAS  Google Scholar 

  • Forrest CM, Mackay GM, Oxford L, Stoy N, Stone TW, Darlington LG (2006) Kynurenine pathway metabolism in patients with osteoporosis after two years of drug treatment. Clin Exp Pharmacol Physiol 33:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote α-crystallin cross-linking by metal ion reduction. Biochemistry 39:7266–7275

    Article  PubMed  CAS  Google Scholar 

  • Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 11:3857–3863

    Article  PubMed  CAS  Google Scholar 

  • Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461

    Article  PubMed  CAS  Google Scholar 

  • Guidetti P, Bates GP, Graham RK, Hayden MR, Leavitt BR, MacDonald ME, Slow EJ, Wheeler VC, Woodman B, Schwarcz R (2006) Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington’s disease. Neurobiol Dis 23:190–197

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, Yergey JA, Mouradian MM, Sadler AE, Keilp J, Rubinow D, Markey SP (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 29:202–209

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Ishii T, Sugata R, Kido R (1988) Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen. Biochem J 251:893–899

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, Nishida E (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem 272:18518–18521

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Brus R (2000) Dopaminergic denervation enhances susceptibility to hydroxyl radicals in rat neostriatum. Amino Acids 191:183–199

    Article  Google Scholar 

  • Mackay GM, Forrest CM, Stoy N, Christofides J, Egerton M, Stone TW, Darlington LG (2006) Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur J Neurol 13:30–42

    Article  PubMed  CAS  Google Scholar 

  • Medana IM, Day NPJ, Salahifar-Sabet H, Stocker R, Smythe G, Bwanaisa L, Njobvu A, Kayira K, Tuner GDH, Taylor TE, Hunt NH (2003) Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis 188:844–849

    Article  PubMed  CAS  Google Scholar 

  • Morita AU, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, Wada H, Takeuchi S, Noma A, Seishima M (2001) 3-Hydroxyanthranilic acid, an l-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-gamma. Ann Clin Biochem 38:242–251

    Article  PubMed  CAS  Google Scholar 

  • Moroni F (1998) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375(special issue): 87–100

    Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci USA 93:12553–12558

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    Article  PubMed  CAS  Google Scholar 

  • Opitz CA, Wick W, Steinman L, Platten M (2007) Tryptophan degradation in autoimmune diseases. Cell Mol Life Sci 64:19–20

    Article  CAS  Google Scholar 

  • Perkins MN, Stone TW (1983) Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Pharm Exp Ther 226:551–557

    CAS  Google Scholar 

  • Plesnila N, Zinkel S, Le DA, Amin-Hanjani S, Wu Y, Qiu J, Chiarugi A, Thomas SS, Kohane DS, Korsmeyer SJ, Moskowitz MA (2001) BID mediates neuronal cell death after oxygen/glucose deprvation and focal cerebral ischaemia. Proc Nat Acad Sci USA 98:15318–15323

    Article  PubMed  CAS  Google Scholar 

  • Popoli P, Pezzola A, Domenici MR, Sagratella S, Diana G, Caporali MG, Bronzetti E, Vega J, Decarolis AS (1994) Behavioral and electrophysiological correlates of the quinolinic acid rat model of Huntington’s disease in rats. Brain Res Bull 35:329–335

    Article  PubMed  CAS  Google Scholar 

  • Rotman B, Papermaster BW (1996) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci USA 55:134–141

    Article  Google Scholar 

  • Sanni LA, Thomas SR, Tattam BN, Moore DE, Chaudhri G, Stocker R, Hunt NH (1998) Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and non-cerebral malaria. Am J Pathol 152:611–619

    PubMed  CAS  Google Scholar 

  • Santamaria A, Galvan-Arzate S, Lisy V, Ali SF, Duhart HM, Osorio-Rico L, Rios C, Stasny F (2001) Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport 12:871–874

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Stone TW, Smith RA (2007) Neurotoxicity of tryptophan metabolites. Biochem Soc Trans 35:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • St’astny F, Lisy V, Mares V, Lisa R, Balcar VJ, Santamaria A (2004) Quinolinic acid induces NMDA receptor-mediated lipid peroxidation in rat brain microvessels. Redox Rep 9:229–233

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64:185–218

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Article  PubMed  CAS  Google Scholar 

  • Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623

    Article  PubMed  CAS  Google Scholar 

  • Trenkner E (1998) Cerebellar cells in culture. In: Banker G, Goslin K (eds) Culturing nerve cells, 2nd edn, chap 12. MIT Press, Cambridge

  • Valencia A, Morán J (2004) Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Rad Biol Med 36:1112–1125

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM (2000) Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterisation and protection by dantrolene and bcl-2 overexpression. J Neurochem 75:81–90

    Article  PubMed  CAS  Google Scholar 

  • Wu HQ, Guidetti P, Goodman JH, Varasi M, Ceresoli-Borroni G, Speciale C, Scharfman HE, Schwarcz R (2000) Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo. Neuroscience 97:243–251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor W. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.J., Smith, R.A. & Stone, T.W. 5-Hydroxyanthranilic Acid, a Tryptophan Metabolite, Generates Oxidative Stress and Neuronal Death via p38 Activation in Cultured Cerebellar Granule Neurones. Neurotox Res 15, 303–310 (2009). https://doi.org/10.1007/s12640-009-9034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9034-0

Keywords

Navigation