Skip to main content
Log in

Cholesterol Synthesis Inhibitor U18666A and the Role of Sterol Metabolism and Trafficking in Numerous Pathophysiological Processes

  • Review
  • Published:
Lipids

Abstract

The multiple actions of U18666A have enabled major discoveries in lipid research and contributed to understanding the pathophysiology of multiple diseases. This review describes these advances and the utility of U18666A as a tool in lipid research. Harry Rudney’s recognition that U18666A inhibited oxidosqualene cyclase led him to discover a pathway for formation of polar sterols that he proved to be important regulators of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Laura Liscum’s recognition that U18666A inhibited the egress of cholesterol from late endosomes and lysosomes led to greatly improved perspective on the major pathways of intracellular cholesterol trafficking. The inhibition of cholesterol trafficking by U18666A mimicked the loss of functional Niemann–Pick type C protein responsible for NPC disease and thus provided a model for this disorder. U18666A subsequently became a tool for assessing the importance of molecular trafficking through the lysosomal pathway in other conditions such as atherosclerosis, Alzheimer’s disease, and prion infections. U18666A also provided animal models for two important disorders: petite mal (absence) epilepsy and cataracts. This was the first chronic model of absence epilepsy. U18666A is also being used to address the role of oxidative stress in apoptosis. How can one molecule have so many effects? Perhaps because of its structure as an amphipathic cationic amine it can interact and inhibit diverse proteins. Restricting the availability of cholesterol for membrane formation through inhibition of cholesterol synthesis and intracellular trafficking could also be a mechanism for broadly affecting many processes. Another possibility is that through intercalation into membrane U18666A can alter membrane order and therefore the function of resident proteins. The similarity of the effects of natural and enantiomeric U18666A on cells and the capacity of intercalated U18666A to increase membrane order are arguments in favor of this possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACAT:

Acyl cholesterol acyl transferase

APP:

β-Amyloid precursor protein

AY-9944:

trans 1, 4-bis(2-Chlorobenzylaminoethyl)cyclohexane

CHO:

Chinese hamster ovary

DHCR24:

7-Dehydrocholesterol reductase 24

DRM:

Detergent-resistant membranes

EEG:

Electroencephalogram

ER:

Endoplasmic reticulum

GABA:

Gamma aminobutyric acid

HMGCoA:

3-Hydroxy-3-methyl-glutaryl coenzyme A

LDL:

Low density lipoproteins

Mer 29 (triparanol):

(1-[p-(β-Diethylaminoethoxy)-phenyl]-1-(p-tolyl)-2-(p-chlorophenyl) ethanol

MVB:

Multivesicular bodies

NPC:

Niemann–Pick type C disease

PM:

Plasma membrane

OSC:

2, 3-Oxidosqualene cyclase

SDO:

Squalene 2, 3:22,23-dioxide

SO:

Squalene oxide

U18666A:

3-β-[2-(Diethylamino)ethoxy]androst-5-en-17-one

References

  1. Cenedella RJ (1996) Cholesterol and cataracts. Surv Ophthalmol 40:320–337

    PubMed  CAS  Google Scholar 

  2. Cavallini G, Massarani E (1951) Contributo Alle Relazioni Fra Costituzions Chimica Ed Attivita Biologica. Sci.e tee (pavia) 6:291–299

    CAS  Google Scholar 

  3. Phillips WA, Avigan J (1963) Inhibition of cholesterol biosynthesis in the rat by 3β (2-diethylamino-ethoxy) androst-5-en-17-one, hydrochloride (28003). Proc Soc Exp Bld Med 112:233–236

    CAS  Google Scholar 

  4. Avigan J, Steinberg D, Vroman HE, Thompson MJ, Mosettig E (1960) I. The identification of desmosterol in serum and tissues of animals and man treated with MER-29. J Biol Chem 235:3123–3126

    PubMed  CAS  Google Scholar 

  5. Gordon S, Cantrall EW, Cekeleniak WP, Albers HJ, Littell R, Bernstein S (1961) The hypocholesterolemic effect of 3β-(β-dimethlaminoethoxy)-androst-5-en-17-one and its mechanism of action. Biochem Biophys Res Comm 6:359–363

    CAS  Google Scholar 

  6. Cantrall EW, Littell R, Stolar SM, Cakleniak WP, Albers HJ, Gordon S, Bernstein S (1963) Steroids and lipid metabolism. 1 The hypocholesterolemic effect of 3-(β-dialkylaminoethoxy)-substituted steroids. Steroids 1:173–178

    CAS  Google Scholar 

  7. Kirby TJ, Achor RWP, Perry HO, Winkelmann RK (1962) Cataract formation after triparanol therapy. Arch Ophthalmol 68:486–489

    PubMed  Google Scholar 

  8. Laughlin RC, Carey TF (1962) Cataracts in patients treated with triparanol. JAMA 181:339–340

    PubMed  CAS  Google Scholar 

  9. Cenedella RJ, Bierkamper GG (1979) Mechanism of cataract production by 3-β(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride, U18666A: an inhibitor of cholesterol biosynthesis. Exp Eye Res 28:673–688

    PubMed  CAS  Google Scholar 

  10. Cenedella RJ (1980) Concentration-dependent effects of AY-9944 and U18666A on sterol synthesis in brain. Biochem Pharm 29:2751–2754

    PubMed  CAS  Google Scholar 

  11. Volpe JJ, Obert KA (1982) Interrelationships of ubiquinone and sterol syntheses in cultured cells of neural origin. J Neurochem 38:931–938

    PubMed  CAS  Google Scholar 

  12. Sexton RC, Panini SR, Azran F, Rudney H (1983) Effects of 3β-[2-diethylaminoethoxy]androst-5-en-17-one on the synthesis of cholesterol and ubiquinone in rat intestinal epithelial cell cultures. Am Chem Soc 22:5687–5691

    CAS  Google Scholar 

  13. Panini SR, Sexton RC, Rudney H (1984) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by oxysterol by-products of cholesterol biosynthesis. J Biol Chem 259:7767–7771

    PubMed  CAS  Google Scholar 

  14. Gupta A, Sexton RC, Rudney H (1986) Modulation of regulatory oxysterol formation and low density lipoprotein suppression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity by ketoconazole. J Biol Chem 261:8348–8356

    PubMed  CAS  Google Scholar 

  15. Panini SR, Sexton PR, Gupta AK, Parish EJ, Chitrakorn S, Rudney H (1986) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols. J Lipid Res 27:1190–1204

    PubMed  CAS  Google Scholar 

  16. Bae SH, Seong J, Paik YK (2001) Cholesterol biosynthesis from lanosterol: molecular cloning, chromosomal localization, functional expression and liver-specific gene regulation of rat sterol ∆8-isomerase, a cholesterogenic enzyme with multiple functions. Biochem J 353:689–699

    PubMed  CAS  Google Scholar 

  17. Moebius FF, Reiter RJ, Bermoser K, Glossmann H, Cho SY, Paik YK (1998) Pharmacological analysis of sterol ∆8–∆7 isomerase proteins with [3H] ifenprodil. Mol Pharm 1998:591–598

    Google Scholar 

  18. Duriatti A, Bouvier-Nave P, Benveniste P, Schuber F, Delprino L, Balliano G, Cattel L (1985) In vitro inhibition of animal and higher plants 2, 3-oxidosqualene-sterol cyclases by 2-aza-2, 3-dihydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem Pharm 34:2765–2775

    PubMed  CAS  Google Scholar 

  19. Bae SH, Paik YK (1997) Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat liver microsomal lanosterol ∆24-reductase. Biochem J 326:609–616

    PubMed  CAS  Google Scholar 

  20. Lenhart A, Reinert DJ, Dehmlow H, Morand OH, Schulz GE (2003) Binding structures and potencies of oxidosqualene cyclase inhibitors with the homologous Squalene-Hopene cyclase. J Med Chem 46:2083–2092

    PubMed  CAS  Google Scholar 

  21. Cenedella RJ, Sexton PS, Krishnan K, Covey DF (2005) Comparison of effects of U18666A and enantiomeric on sterol synthesis and induction of apoptosis. Lipids 40:635–640

    PubMed  CAS  Google Scholar 

  22. Cenedella RJ, Jacob R, Borchman D, Tang D, Neely AR, Samadi A, Mason RP, Sexton P (2004) Direct perturbation of lens membrane structure may contribute to cataracts caused by U18666A, an oxidosqualene cyclase inhibitor. J Lipid Res 45:1232–1241

    PubMed  CAS  Google Scholar 

  23. Colassanti BK, Hartman ER, Craig CR (1974) Electrocorticogram and behavioral correlates during the development of chronic experimental epilepsy. Epilepsia 15:361–373

    Google Scholar 

  24. Bierkamper GG, Cenedella RJ (1978) Cerebral cortical cholesterol changes in cobalt-induced epilepsy. Epilepsy 19:155–167

    CAS  Google Scholar 

  25. Jurgelski W Jr, Hudson PM, Vogel FS (1973) Induction of a chronic somatosensory epilepsy in the opossum (Didelphis virginiana Kerr) with an inhibitor of cholesterol biosynthesis. Brain Res 64:466–471

    PubMed  CAS  Google Scholar 

  26. Bierkamper GG, Cenedella RJ (1978) Induction of chronic epileptiform activity in the rat by an inhibitor of cholesterol synthesis, U18666A. Brain Res 150:343–351

    PubMed  CAS  Google Scholar 

  27. Vainio S, Jansen M, Koivusalo M, Rog T, Karttunen M, Vattulainen I, Ikonen E (2006) Significance of sterol structural specificity desmosterol cannot replace cholesterol in lipid rafts. J Biol Chem 281:348–355

    PubMed  CAS  Google Scholar 

  28. Cenedella RJ (1985) Regional distribution of lipids and phospholipase A2 activity in normal and cataractous rat lens. Curr Eye Res 4:113–119

    PubMed  CAS  Google Scholar 

  29. Fliesler SJ, Richards MJ, Miller CY, Peachey NS, Cenedella RJ (2000) Retinal structure and function in an animal model that replicates the biochemical hallmarks of desmosterolosis. Neurochem Res 25:685–694

    PubMed  CAS  Google Scholar 

  30. Fliesler SJ, Richards MJ, Miller CY, Cenedella RJ (2000) Cholesterol synthesis in the vertebrate retina: effects of U18666A on rat retinal structure, photoreceptor membrane assembly and sterol metabolism and composition. Lipids 35:289–296

    PubMed  CAS  Google Scholar 

  31. Rujanavech C, Silbert DF (1986) LM cell growth and membrane lipid adaptation to sterol structure. J Biol Chem 261:7196–7203

    PubMed  CAS  Google Scholar 

  32. Xu F, Rychnovsky SD, Belani JD, Hobbs HH, Cohen JC, Rawson RB (2005) Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci USA 102:14551–14556

    PubMed  CAS  Google Scholar 

  33. Wu J, Ellsworth K, Ellsworth M, Schroeder KM, Smith K, Fisher RS (2004) Abnormal benzodiazepine and zinc modulation of GABAA receptors in an acquired absence epilepsy model. Brain Res 1013:230–240

    PubMed  CAS  Google Scholar 

  34. Sparrow SM, Carter JM, Ridgway ND, Cook HW, Byers DM (1999) U18666A inhibits intracellular cholesterol transport and neurotransmitter release in human neuroblastoma cells. Neurochem Res 24:69–77

    PubMed  CAS  Google Scholar 

  35. Smith KA, Bierkamper GG (1990) Paradoxical role of GABA in a chronic model of Petit Mal (absence)-like epilepsy in the Rat. Eur J Pharm 176:45–55

    CAS  Google Scholar 

  36. Krami M, Bagli JF, Dvornik KD (1964) Inhibition of conversion of 7-dehydrocholesterol to cholesterol nu AY-9944. Biochim Biophys Acta 15:455–457

    Google Scholar 

  37. Smith KA, Fisher RS (1996) The selective GABAB antagonist CGP-35348 blocks spike-wave bursts in the cholesterol synthesis rat absence epilepsy model. Brain Res 729:147–150

    PubMed  CAS  Google Scholar 

  38. Cortez MA, McKerlie C, Snead OC III (2001) A model of atypical absence seizures. Neurology 56:341–349

    PubMed  CAS  Google Scholar 

  39. Cortez MA, Cunnane SC, Snead OC III (2002) Brain sterols in the AY-9944 rat model of atypical absence seizures. Epilepsia 43:3–8

    PubMed  CAS  Google Scholar 

  40. Persad V, Cortez MA, Snead OC III (2002) A chronic model of atypical absence seizures: studies of developmental and gender sensitivity. Epilepsy Res 48:111–119

    PubMed  Google Scholar 

  41. Serbanescu I, Ryan MA, Shukla R, Cortez MA, Snead OC III, Cunnane SC (2004) Lovastatin exacerbates atypical absence seizures with only minimal effects on brain sterols. J Lipid Res 45:2038–2043

    PubMed  CAS  Google Scholar 

  42. Persad V, Ting Wong CG, Cortez MA, Wang YT, Snead OC III (2004) Hormonal regulation of atypical absence seizures. Ann Neurol 55:353–361

    PubMed  CAS  Google Scholar 

  43. Chan KF, Jia Z, Murphy PA, Burnham WM, Cortez MA, Snead OC III (2004) Learning and memory impairment in rats with chronic atypical absence seizures. Exp Neurol 190:328–336

    PubMed  Google Scholar 

  44. Serbanescu I, Cortez MA, McKerlie C, Snead OC III (2004) Refractory atypical absence seizures in rat: a two hit model. Epilepsy Res 62:53–63

    PubMed  CAS  Google Scholar 

  45. Li H, Kraus A, Wu J, Huguenard JR, Fisher RS (2006) Selective changes in thalamic and cortical GABAA receptor subunits in a model of acquired absence epilepsy in the rat. Neuropharmacology 51:121–128

    PubMed  CAS  Google Scholar 

  46. Stewart LS, Bercovici E, Shukla R, Serbanescu I, Persad V, Mistry N, Cortez MA, Snead OC III (2006) Daily rhythms of seizure activity and behavior in a model of atypical absence epilepsy. Epilepsy Behav 9:564–572

    PubMed  Google Scholar 

  47. Chan KF, Burnham WM, Jia Z, Cortez MA, Snead OC III (2006) GABAB receptor antagonism abolishes the learning in rats with chronic atypical absence seizures. Eur J Pharmacol 541:64–72

    PubMed  CAS  Google Scholar 

  48. Bercovici E, Cortez MA, Wang X, Snead OC III (2006) Serotonin depletion attenuates AY-9944-mediated atypical absence seizures. Epilepsia 47:240–246

    PubMed  CAS  Google Scholar 

  49. Bercovici E, Cortez MA, Snead OC III (2007) 5-HT2 modulation of AY-9944 induced atypical absence seizures. Neurosci Lett 418:13–17

    PubMed  CAS  Google Scholar 

  50. Li H, Huguenard JR, Fisher RS (2007) Gender and age difference in expression of GABAA receptor subunits in rat somatosensory thalamus and cortex in an absence epilepsy model. Neurobiol Dis 25:623–630

    PubMed  CAS  Google Scholar 

  51. Cenedella RJ, Kuszak JR, Al-Ghoul KJ, Qin S, Sexton PS (2003) Discordant expression of the sterol pathway in lens underlies simvastatin-induced cataracts in Chbb: Thom Rats. J Lipid Res 44:198–211

    PubMed  CAS  Google Scholar 

  52. Kuszak JR, Khan AR, Cenedella RJ (1988) An ultrastructural analysis of plasma membrane in the U18666A cataract. Opthal Vis Sci 29:261–267

    CAS  Google Scholar 

  53. Jacob RF, Cenedella RJ, Mason RP (1999) Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J Biol Chem 274:31613–31618

    PubMed  CAS  Google Scholar 

  54. Jacob RF, Cenedella RJ, Mason RP (2001) Evidence for distinct cholesterol domains in fiber cell membranes from cataractous human lenses. J Biol Chem 276:13573–13578

    PubMed  CAS  Google Scholar 

  55. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    PubMed  CAS  Google Scholar 

  56. Liscum L, Faust JR (1989) The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultures with 3-β-{2-(Diethylamino)ethoxy}androst-5-en-17-one*. J Biol Chem 264:11796–11806

    PubMed  CAS  Google Scholar 

  57. Liscum L (1990) Pharmacological inhibition of the intracellular transport of low-density lipoprotein-derived cholesterol in Chinese hamster ovary cells. Biochim Biophys Acta 1045:40–48

    PubMed  CAS  Google Scholar 

  58. Liscum L, Collins GJ (1991) Characterization of Chinese hamster ovary cells that are resistant to 3-β-[2-(diethylamino)ethoxy]androst-5-en-17-one inhibition of low density lipoprotein-derived cholesterol metabolism. J Biol Chem 266:16599–16606

    PubMed  CAS  Google Scholar 

  59. Liscum L, Dahl NK (1992) Intracellular cholesterol transport. J Lipid Res 33:1239–1254

    PubMed  CAS  Google Scholar 

  60. Underwood KW, Jacobs NL, Howley A, Liscum L (1997) Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane. J Biol Chem 273:4266–4274

    Google Scholar 

  61. Underwood KW, Andermariam B, McWilliams GL, Liscum L (1996) Quantitative analysis of hydrophobic amine inhibition of intracellular cholesterol transport. J Lipid Res 37:1556–1568

    PubMed  CAS  Google Scholar 

  62. Feng B, Tabas I (2002) ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. J Biol Chem 277:43271–43280

    PubMed  CAS  Google Scholar 

  63. Lange Y, Ye J, Chin J (1997) The fate of cholesterol exiting lysosomes. J Biol Chem 272:17018–17022

    PubMed  CAS  Google Scholar 

  64. Lange Y, Ye J, Steck TL (1998) Circulation of cholesterol between lysosomes and the plasma membrane. J Biol Chem 273:18915–18922

    PubMed  CAS  Google Scholar 

  65. Lange Y, Ye J, Rigney M, Steck TL (1999) Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res 40:2264–2270

    PubMed  CAS  Google Scholar 

  66. Butler JD, Blanchette-Mackie J, Goldin E, O’Neill RR, Carstea G, Roff CF, Patterson MC, Patel S, Comly ME, Cooney A, Vanier MT, Brady RO, Pentchev PG (1992) Progesterone blocks cholesterol translocation from lysosomes. J Biol Chem 267:23797–23805

    PubMed  CAS  Google Scholar 

  67. Roff CF, Goldin E, Comly ME, Cooney A, Brown A, Vanier MT, Miller SPF, Brady RO, Pentchev PG (1991) Type C Niemann–Pick disease: use of hydrophobic amines to study defective cholesterol transport. Dev Neurosci 13:315–319

    PubMed  CAS  Google Scholar 

  68. Sparrow SM, Carter JM, Ridgway ND, Cook HW, Byers DM (1999) U18666A inhibits intracellular cholesterol transport and neurotransmitter release in human neuroblastoma cells. Neurochem Res 24:69–77

    PubMed  CAS  Google Scholar 

  69. Issandou M, Guillard R, Boullay AB, Linhart V, Lopez-Perez E (2004) Up-regulation of low-density lipoprotein receptor in human hepatocytes is induced by sequestration of free cholesterol in the endosomal/lysosomal compartment. Biochem Pharmacol 67:2281–2289

    PubMed  CAS  Google Scholar 

  70. Liscum L, Klansek JJ (1998) Niemann–Pick disease type C. Curr Opin Lipidol 9:131–135

    PubMed  CAS  Google Scholar 

  71. Lange Y, Ye J, Rigney M, Steck T (2000) Cholesterol movement in Niemann–Pick type C cells and in cells treated with amphiphiles. J Biol Chem 275:17468–17475

    PubMed  CAS  Google Scholar 

  72. Blanchette-Mackie EJ (2000) Intracellular cholesterol trafficking: role of the NPCI protein. Biochim Biophys Acta 1486:171–183

    PubMed  CAS  Google Scholar 

  73. Neufeld EB, Wastney M, Patel S, Suresh S, Cooney AM, Dwyer NK, Roff CF, Ohno K, Morris JA, Carstea ED, Incardona JP, Strauss JF III, Vanier MT, Patterson MC, Brady RO, Pentchev PG, Blanchette-Mackie EJ (1999) The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem 274:9627–9635

    PubMed  CAS  Google Scholar 

  74. Ko DC, Gordon MD, Jin JY, Scott MP (2001) Dynamic movements of organelles containing Niemann–Pick C1 protein: NPC1 involvement in late endocytic events. Am Soc Cell Biol 12:601–614

    CAS  Google Scholar 

  75. Cruz JC, Sugii S, Yu C, Chang TY (2000) Role of Niemann–Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J Biol Chem 275:4013–4021

    Google Scholar 

  76. Vanier MT (1999) Lipid changes in Niemann–Pick disease type C brain: personal experience and review of the literature. Neurochem Res 24:481–489

    Google Scholar 

  77. Karten B, Vance DE, Campenot RB, Vance JE (2003) Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient Neurons. J Biol Chem 278:4168–4175

    PubMed  CAS  Google Scholar 

  78. Pacheco CD, Kunkel R, Lieberman AP (2007) Autophagy in Niemann–Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Hum Mol Gene 16:1495–1503

    CAS  Google Scholar 

  79. Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629

    PubMed  CAS  Google Scholar 

  80. Higgins ME, Davies JP, Chen FW, Ioannou YA (1999) Niemann–Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-Golgi network. Mol Genet Metab 68:1–13

    PubMed  CAS  Google Scholar 

  81. Watari H, Blanchette-Mackie EJ, Dwyer NK, Sun G, Glick JM, Patel S, Neufeld EB, Pentchev PG, Strauss JF III (2000) NPC1-containing compartment of human granulose-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenesis. Exp Cell Res 25:56–66

    Google Scholar 

  82. Lange Y, Ye J, Rigney M, Steck TL (2002) Dynamics of lysosomal cholesterol in Niemann–Pick type C and normal human fibroblasts. J Lipid Res 43:198–204

    PubMed  CAS  Google Scholar 

  83. Sugimoto Y, Ninomiya H, Ohsaki Y, Higaki K, Davies JP, loannou YA, Ohno K (2001) Accumulation of cholera toxin and GM1 ganglioside in the early endosome of Niemann–Pick C1-deficient cells. Proc Natl Acad Sci USA 98:12391–12396

    PubMed  CAS  Google Scholar 

  84. Mohammadi A, Perry RJ, Storey MK, Cook HW, Byers DM (2001) Golgi and phosphorylation of oxysterol binding protein in Niemann–Pick C and U18666A-treated cells. J Lipid Res 42:1062–1071

    PubMed  CAS  Google Scholar 

  85. Cenedella RJ, Sarkar CP, Towns L (1981) Studies on the mechanism of the epileptiform activity induced by U18666A. II. Concentration, half-life and distribution of radiolabeled U18666A in the brain. Epilepsia 23:257–268

    Google Scholar 

  86. Tangirala RK, Mahlberg FH, Glick JM, Jerome WG, Rothblat GH (1993) Lysosomal accumulation of unesterified cholesterol in model macrophage foam cells. J Biol Chem 268:9653–9660

    PubMed  CAS  Google Scholar 

  87. Delton-Vandenbroucke I, Bouvier J, Makino A, Besson N, Pageaux JF, Lagarde M, Kobayashi T (2007) Anti-bis (monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages. J Lipid Res 48:543–552

    PubMed  CAS  Google Scholar 

  88. Kellner-Weibel G, Jerome WG, Small DM, Warner GJ, Stoltenborg JK, Kearney MA, Corjay MH, Phillips MC, Rothblat GH (1997) Effects on intracellular free cholesterol accumulation on macrophage viability a model for foam cell death. Arterioscler Thromb Vasc Biol 18:423–431

    Google Scholar 

  89. Neufeld EB, Stonik JA, Demosky SJ Jr, Knapper CL, Combs CA, Cooney A, Comly M, Dwyer N, Blanchette-Mackie J, Remaley AT, Santamarina-Fojo S, Brewer HB Jr (2004) The ABCA1 transporter modulates late endocytic trafficking. J Biol Chem 279:15571–15578

    PubMed  CAS  Google Scholar 

  90. Jin LW, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-β precursor protein in neurons with Niemann–Pick type C defects is associated with endosomal abnormalities. J Path 164:975–985

    CAS  Google Scholar 

  91. Yamazaki T, Chang TY, Haass C, Thara Y (2001) Accumulation and aggregation of amyloid β-Protein in late endosomes of Niemann–Pick Type C Cells. J Biol Chem 276:4454–4460

    PubMed  CAS  Google Scholar 

  92. Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreither K, Pepperkok R, Hartmann T (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22:1679–1689

    PubMed  CAS  Google Scholar 

  93. Kametaka S, Shibata M, Moroe K, Kanamori S, Ohsawa Y, Waguri S, Sims PJ, Emoto K, Umeda M, Uchiyama Y (2003) Identification of phospholipid scramblase 1 as a novel interacting molecule with ß-secretase (ßiSite amyloid precursor protein (APP) cleaving enzyme (BACE)). J Biol Chem 278:15239–15245

    PubMed  CAS  Google Scholar 

  94. Klingenstein R, Lober S, Kujala P, Godsave S, Leliveld SR, Gmeiner P, Peters P, Korth C (2006) Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments. J Neuro Chem 98:748–759

    CAS  Google Scholar 

  95. Hagiwara K, Nakamura Y, Nishijima M, Yamakawa Y (2007) Prevention of prion propagation by dehydrocholesterol reductase inhibitors in cultured cells and a therapeutic trial in mice. Biol Pharm Bull 30:835–838

    PubMed  CAS  Google Scholar 

  96. Cenedella RJ (1983) Source of cholesterol for the ocular lens, studied with U18666A: a cataract-producing inhibitor of lipid metabolism. Exp Eye Res 37:33–43

    PubMed  CAS  Google Scholar 

  97. Harada M, Kawaguchi T, Kumemure H, Terada K, Ninomiya H, Taniguchi E, Hanada S, Baba S, Maeyama M, Koga H, Ueno T, Furuta K, Suganuma T, Sugiyama T, Sata M (2005) The Wilson disease protein ATP7B resides in the late endosomes with Rab 7 and the Niemann–Pick C1 Protein. J Path 166:499–510

    Google Scholar 

  98. Lindwasser OW, Resh MD (2004) Human immunodeficiency virus type 1 gag contains a dileucine-like motif that regulates association with multivesicular bodies. J Virol 78:6013–6023

    PubMed  CAS  Google Scholar 

  99. de Diego I, Schwartz F, Siegfried H, Dauterstedt P, Heeren J, Beisiegel U, Enrich C, Grewal T (2002) Cholesterol modulates the membrane binding and intracellular distribution of annexin 6. J Biol Chem 277:32187–32194

    PubMed  Google Scholar 

  100. LeBrand C, Corti M, Goodson H, Cosson P, Cavalli V, Mayran N, Faure J, Gruenberg J (2002) Late endosome motility depends in lipids via the small GTPase Rab 7. EMBO J 21:1289–1300

    PubMed  CAS  Google Scholar 

  101. Umeda A, Fujita H, Kuronita T, Hirosako K, Himeno M, Tanaka Y (2003) Distribution and trafficking of MPR300 is normal in cells with cholesterol accumulated in late endocytic compartments: evidence for early endosome-to-TGN trafficking of MPR300. J Lipid Res 44:1821–1832

    PubMed  CAS  Google Scholar 

  102. Tomiyama Y, Waguri S, Kanamori S, Kametaka S, Wakasugi M, Shibata M, Ebisu S, Uchiyama Y (2004) Early-phase redistribution of the cation-independent mannose 6-phosphate receptor by U18666A treatment in HeLa cells. Cell Tissue Res 317:253–264

    PubMed  CAS  Google Scholar 

  103. Stasi DD, Vallacchi V, Campi V, Ranzani T, Daniotti M, Chiodini E, Fiorentini S, Greeve I, Prinetti A, Rivoltini L, Pierotti MA, Rodolfo M (2005) DHCR24 gene expression is upregulated in melanoma metastases and associated to resistance to oxidative stress-induces apoptosis. Int J Cancer 115:224–230

    PubMed  Google Scholar 

  104. Cheung NS, Koh CHV, Bay BH, Qi RZ, Choy MS, Li QT, Wong KP, Whiteman M (2004) Chronic exposure to U18666A induces apoptosis in cultured murine cortical neurons. Biochem Biophys Res Commun 315:408–417

    PubMed  CAS  Google Scholar 

  105. Koh CHV, Qi RZ, Qu D, Melendez A, Manikandan J, Bay BH, Duan W, Cheung NS (2006) U18666A-mediated apoptosis in cultured murine cortical neurons: role of caspases, calpains and kinases. Sci Dir 18:1572–1583

    CAS  Google Scholar 

  106. Huang Z, Hou Q, Cheung NS, Li QT (2006) Neuronal cell death caused by inhibition of intracellular cholesterol trafficking is caspase dependent and associated with activation of the mitochondrial apoptosis pathway. J Neurochem 97:280–291

    PubMed  CAS  Google Scholar 

  107. Koh CH, Whiteman M, Li QX, Halliwell B, Jenner AM, Wong BS, Laughton KM, Wenk M, Masters CL, Beart PM, Bernard O, Cheung NS (2006) Chronic exposure to U18666A is associated with oxidative stress in cultured murine cortical neurons. J Neurobiochem 98:1278–1289

    CAS  Google Scholar 

  108. Koh CHV, Cheung NS (2006) Cellular mechanism of U18666A-mediated apoptosis in cultured murine cortical neurons: bridging Niemann–Pick disease type C and Alzheimer’s disease. Sci Dir 18:1844–1853

    CAS  Google Scholar 

  109. Koh CH, Peng ZF, Ou K, Melendez A, Manikandan J, Qi RZ, Cheung NS (2007) Neuronal apoptosis mediated by inhibition of intracellular cholesterol transport: microarray and proteomics analyses in cultured murine cortical neurons. Cell Physiol 211:63–87

    CAS  Google Scholar 

  110. Yadav S, Rawal UM (1992) Cholesterol and lipid peroxidation in 3 beta-(2-diethylaminoethoxy)-androst-5-en-17-one HCI (U18666A) induced cataractogenesis in rats. Indian J Exp Biol 30:147–148

    PubMed  CAS  Google Scholar 

  111. Bursch W, Ellinger A (2005) Autophagy—a basic mechanism and a potential role for neurodegeneration. Folia Neuropathol 43:297–310

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USPHS NIH grant EY02568-29. The author remembers Harry Rudney for his encouragement and George Bierkamper for his great ideas and friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Cenedella.

About this article

Cite this article

Cenedella, R.J. Cholesterol Synthesis Inhibitor U18666A and the Role of Sterol Metabolism and Trafficking in Numerous Pathophysiological Processes. Lipids 44, 477–487 (2009). https://doi.org/10.1007/s11745-009-3305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3305-7

Keywords

Navigation