Skip to main content
Log in

QTLs mapping of morphological traits related to salt tolerance in Medicago truncatula

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To understand the complex inheritance of tolerance to salt stress in Medicago truncatula, quantitative trait loci (QTLs) analysis was performed using a set of recombinant inbred lines (RILs) derived from a cross between the tolerant line Jemalong A17 and susceptible line F83005.5. The RILs and parental lines were grown in individual pots filled with sterilized sand in a greenhouse under 0 and 50 mM NaCl. Plants were harvested after a period of 60 days. Fourteen quantitative traits related to aerial and root growths were measured. Broad-sense heritability of measured traits ranged from 0.21 to 0.83 and from 0.05 to 0.62 in control and in salt-stressed conditions, respectively. Established correlations between measured traits are dependent on treatment effect. We identified and mapped 10 QTLs in control conditions and 19 in salt stress. No major QTL was identified indicating that tolerance to salt stress is governed by several genes with low effects. The QTLs detected under control and under salt-stressed conditions almost did not share the same map locations suggesting that the loci that are not stable across treatments reflect adaptation to this constraint. The maximum of QTLs was observed on the chromosome 8. The usefulness of these QTLs, identified in greenhouse conditions, for marker-assisted selection should therefore be evaluated under field conditions, and validated in other genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Badri M (2008) Analyse comparative de la variabilité génétique et symbiotique chez Medicago laciniata et M. truncatula et identification des QTLs liés au stress hydrique. Ph.D. thesis, Faculty of Sciences of Tunis, Tunisia, pp 1–172

  • Badri M, Ilahi H, Huguet T, Aouani ME (2007) Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genet Res 89:107–122

  • Djébali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathé C, Bottin A, Cazaux M, Pilet-Nayel M-L, Baranger A, Aouani ME, Esquerré-Tugayé MT, Dumas B, Huguet T, Jacquet C (2009) Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. MPMI 22:1043–1055

    Article  PubMed  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  • El-Lithy M, Clerkx EJM, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 135:444–458

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173

    Article  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Gherardi M, Mangin B, Bonnet D, Goffinet B, Huguet T (1998) A method to measure genetic distance between allogamous populations of alfalfa (Medicago sativa) using RAPD molecular markers. Theor Appl Genet 96:406–412

    Article  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Hervé D, Fabre F, Berrios EF, Leroux N, Al Chaarani G, Planchon C, Sarrafi A, Gentzbittel L (2001) QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under green house condition. J Exp Bot 362:1857–1864

    Article  Google Scholar 

  • Julier B, Huguet T, Chardon F, Ayadi R, Pierre JB, Prosperi JM, Barre P, Huyghe C (2007) Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theor Appl Genet 114:1391–1406

    Article  PubMed  Google Scholar 

  • Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  PubMed  CAS  Google Scholar 

  • Lan TH, Paterson AH (2001) Comparative mapping of QTLs determining the plant size of Brassica oleracea. Theor Appl Genet 103:383–397

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lazrek F, Roussel V, Ronfort J, Cardinet G, Chardon F, Aouani ME, Huguet T (2009) The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135:391–402

    Article  PubMed  CAS  Google Scholar 

  • Lebreton C, Jazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTLs for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  • Loudet O, Chaillou S, Krapp A, Daniel-Vedele F (2003a) Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana. Genetics 163:711–722

    PubMed  CAS  Google Scholar 

  • Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003b) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358

    Article  PubMed  CAS  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative loci for salt tolerance at the germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Article  Google Scholar 

  • May GD, Dixon RA (2004) Quick-guide Medicago truncatula. Curr Biol 14:180–181

    Article  Google Scholar 

  • McCouch SR, Doerge RW (1995) QTL mapping in rice. Trends Genet 11:482–487

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Poormohammad Kiani S, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–778

    Article  Google Scholar 

  • Quarrie SA, Steed A, Semikodskii A, Lebreton C, Lazic-Jancic V, Pekic S (1997) Comparative QTL analysis of stress responses amongst cereals. In: Abstr Proc New Phytol Symp. Bangor, UK, pp 13–14

  • Quesada V, Garcia-Martinez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    Article  PubMed  CAS  Google Scholar 

  • Rachid Al-Chaarani G, Gentzbittel L, Huang X, Sarrafi A (2004) Genotypic variation and identification of QTLs for agronomic traits using AFLP and SSR in recombinant inbred lines of sunflower (Helianthus annuus L.). Theor Appl Genet 109:1353–1360

    Article  PubMed  Google Scholar 

  • Rogers SO, Bendish AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schiperoot RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Sankaran RP, Huguet T, Grusak MA (2009) Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor Appl Genet 119:241–253

    Article  PubMed  CAS  Google Scholar 

  • Shahid Masood M, Seiji Y, Shinwari ZK, Anwar R (2004) Mapping quantitative traits loci (QTLs) for salt tolerance in rice (Oryza sativa) using RFLPs. Pak J Bot 36(4):825–834

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Teulat B, Monneveux P, Wery J, Borries C, Souyris I, Charrier A, This D (1997) Relationships between relative water content and growth parameters under water stress in barely: a QTL study. New Phytol 137:99–107

    Article  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic adjustment trait variation in barely (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    Article  CAS  Google Scholar 

  • Thoquet P, Ghérardi M, Journet EP, Kereszt A, Ané JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1

    Article  PubMed  Google Scholar 

  • Utz HF, Melchinger AE (1996) PlabQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2(1)

  • Vadez V, Rodier F, Payre H, Drevon JJ (1996) Nodule permeability and nitrogenase-linked respiration in bean genotypes varying in the tolerance to P deficiency. Plant Physiol Biochem 35:671–678

    Google Scholar 

  • Yan AO, Hu ZQ, Tang ZX, Wang XF, Xu CW (2009) A general method for QTL mapping in multiple related populations derived from multiple parents of rice. Science 16(1):45–50

    Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zhao XQ, Xu JL, Zhao M, Lafitte R, Zhu LH, Fu BY, Gao YM, Li ZK (2008) QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci 174:618–625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thouraya Sbouri and Zeineb Alaya for technical assistance in the greenhouse. We are also grateful to Michèle Ghérardi for RILs of LR5 population genotyping, Wael Taamalli for useful discussion, and two anonymous reviewers for helpful comments on the manuscript. Financial support of this research work was provided by the FP6 European Grain Legume Integrated Project, and by the Tunisian Ministry of Higher Education and the Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounawer Badri.

Additional information

Communicated by L. A. Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arraouadi, S., Chardon, F., Huguet, T. et al. QTLs mapping of morphological traits related to salt tolerance in Medicago truncatula . Acta Physiol Plant 33, 917–926 (2011). https://doi.org/10.1007/s11738-010-0621-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0621-8

Keywords

Navigation