Skip to main content
Log in

Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In many legume crops, especially in forage legumes, aerial morphogenesis defined as growth and development of plant organs, is an essential trait as it determines plant and seed biomass as well as forage quality (protein concentration, dry matter digestibility). Medicago truncatula is a model species for legume crops. A set of 29 accessions of M. truncatula was evaluated for aerial morphogenetic traits. A recombinant inbred lines (RILs) mapping population was used for analysing quantitative variation in aerial morphogenetic traits and QTL detection. Genes described to be involved in aerial morphogenetic traits in other species were mapped to analyse co-location between QTLs and genes. A large variation was found for flowering date, morphology and dynamics of branch elongation among the 29 accessions and within the RILs population. Flowering date was negatively correlated to main stem and branch length. QTLs were detected for all traits, and each QTL explained from 5.2 to 59.2% of the phenotypic variation. A QTL explaining a large part of genetic variation for flowering date and branch growth was found on chromosome 7. The other chromosomes were also involved in the variation detected in several traits. Mapping of candidate genes indicates a co-location between a homologue of Constans gene or a flowering locus T (FT) gene and the QTL of flowering date on chromosome 7. Other candidate genes for several QTLs are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Blanco C, Mendez-Vigo B, Koornneef M (2005) From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development. Int J Dev Biol 49:717–732

    Article  CAS  PubMed  Google Scholar 

  • Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Levy J, Debelle F, Baek JM, Kaló P, Rosenberg C, Roe BA, Long SR, Denarié J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  PubMed  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Henaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Bandaranayake CK, Koumproglou R, Wang XY, Wilkes T, Kearsey MJ (2004) QTL analysis of morphological and developmental traits in the Ler × Cvi population of Arabidopsis thaliana. Euphytica 137:361–371

    Article  CAS  Google Scholar 

  • Barker D, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Denarie J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1994) Zmap-a QTL cartographer. In: Smith C, Gavora JS, Benkel B, Chesnais J, Fairfull W, Gibson JP, Kennedy BW, Burnside EB (eds) Proceedings of the 5th world congress on genetics applied to livestock production: computing strategies and software, vol 22, Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada, pp 65–66

  • Basten CJ, Weir BS, Zeng ZB (2002) QTL cartographer, Version 1.16. North Carolina State University, Department of Statistics, Raleigh

  • Beveridge CA, Weller JL, Singer SR, Hofer JMI (2003) Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness. Plant Physiol 131:927–934

    Article  CAS  PubMed  Google Scholar 

  • Bonnin I, Ronfort J, Wozniak F, Olivieri I (2001) Spatial effects and rare outcrossing events in Medicago truncatula (Fabaceae). Mol Ecol 10:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kaló P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004a) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  CAS  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004b) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  CAS  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004c) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  CAS  Google Scholar 

  • d’Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34:95–106

    Article  CAS  PubMed  Google Scholar 

  • Delalande M, Ronfort J, Prosperi JM (2004) Diversity for flowering time in a large collection of Medicago truncatula Gaertn. North American Alfalfa Improvement Conference, Québec

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed  Google Scholar 

  • El Lithy ME, Clerkx EJM, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant. Plant Physiol 135:444–458

    Article  CAS  PubMed  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhowskiy K, Zwonitzer JCZ, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler IV ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) Determinate and late flowering are two terminal flower 1/centroradialis homologues controlling two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    Article  CAS  PubMed  Google Scholar 

  • Guines F, Julier B, Ecalle C, Huyghe C (2003) Among- and within-cultivar variability for histological traits of lucerne (Medicago sativa L.) stem. Euphytica 130:293–301

    Article  Google Scholar 

  • Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltran JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  CAS  PubMed  Google Scholar 

  • Huguet T, Thoquet P, Ghérardi M, Cardinet G, Prioul S, Lazrek F, Aouani ME, Laouar M, Abdelguerfi A, Kurchak O, Jacquet C, Torregrosa C, Julier B, Kiss E, Batut J, Prosperi J (2004) A post-genomic approach of the natural variations of the model-legume Medicago truncatula. Legumes for the benefit of agriculture, nutrition and the environment: their genomics, their products, and their improvement, AEP, Dijon, pp 169–170

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9

    Article  PubMed  Google Scholar 

  • Julier B, Guines F, Prosperi JM, Ecalle C, Huyghe C (2002) Variation for morphology and histology of the stems in the model legume species M. truncatula. In: Durand JL, Emile JC, Huyghe C, Lemaire G (eds) Proceedings of the 19th general meeting of the european grassland federation. Multifunction grasslands. Quality forages, animal products and landscapes, La Rochelle, France. Volume 7, AFPF, Versailles, pp 316–317

  • Julier B, Huyghe C (1997) Effect of growth and cultivar on alfalfa digestibility in a multi-site trial. Agronomie 17:481–489

    Google Scholar 

  • Julier B, Porcheron A, Ecalle C, Guy P (1995) Genetic variability for morphology, growth and forage yield among perennial diploid and tetraploid lucerne populations (Medicago sativa L). Agronomie 15:295–304

    Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    Article  CAS  PubMed  Google Scholar 

  • Kwon M, Choe S (2005) Brassinosteroid biosynthesis and dwarf mutants. J Plant Biol 48:1–15

    Article  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Martin DN, Proebsting WM, Hedden P (1997) Mendel’s dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc Natl Acad Sci USA 94:8907–8911

    Article  CAS  PubMed  Google Scholar 

  • McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374

    Article  CAS  PubMed  Google Scholar 

  • Moreau D, Salon C, Munier-Jolain N (2005) Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches. Plant Cell Environ 29:1087–1098

    Article  CAS  Google Scholar 

  • Moreau D, Salon C, Munier-Jolain N (2007) A model-based framework for the phenotypic characterisation of the flowering of Medicago truncatula. Plant Cell Environ 30:213–224

    Article  PubMed  Google Scholar 

  • Moussart A, Onfroy C, Lesne A, Esquibet M, Grenier E, Tivoli B (2006) Host status and reaction of Medicago truncatula accessions to infection by three major pathogens of pea (Pisum sativum) and alfalfa (Medicago sativa). Eur J Plant Pathol 117:57–69

    Article  Google Scholar 

  • Müssig C (2005) Brassinosteroid-promoted growth. Plant Biol 7:110–117

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6:28

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc. (2000) Version 8.1. SAS Institute, Cary, North Carolina

  • Small E, Brookes B (1990) A numerical taxonomic analysis of the Medicago littoralis–M. truncatula complex. Can J Bot 68:1667–1674

    Google Scholar 

  • Small E, Jomphe M (1989) A synopsis of the genus Medicago (Leguminosae). Can J Bot 67:3260–3294

    Google Scholar 

  • Thoquet P, Ghérardi M, Journet EP, Kereszt A, Ané JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1

    Article  PubMed  Google Scholar 

  • VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    Article  CAS  Google Scholar 

  • Wang YH, Li JY (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129

    Article  CAS  PubMed  Google Scholar 

  • Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Catherine Rameau (INRA Versailles) for the primer sequences of pea genes G3H (Le) and TFL1a. We thank Aline Gilly and Joël Jousse for phenotyping the plants, Jean-Louis Durand and Bruno Moulia for advice on branch elongation modelling. The work was supported by the Action Transversale Structurante Medicago truncatula of INRA (2000–2002). R. Ayadi and J.B. Pierre received grants from Région Poitou-Charentes (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Julier.

Additional information

Communicated by C. Hackett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2007_525_MOESM1_ESM.ppt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julier, B., Huguet, T., Chardon, F. et al. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula . Theor Appl Genet 114, 1391–1406 (2007). https://doi.org/10.1007/s00122-007-0525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0525-1

Keywords

Navigation