Skip to main content

Advertisement

Log in

Effect of Laparoscopic Roux-en-Y gastric Bypass on Body Composition and Insulin Resistance in Chinese Patients with Type 2 Diabetes Mellitus

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

This study aims to assess the effect of laparoscopic Roux-en-Y gastric bypass (LRYGB) on body composition, fat distribution, and insulin resistance (IR) in Chinese type 2 diabetes mellitus (T2DM) patients.

Methods

Eighteen patients with T2DM were studied before and 3 months post LRYGB. Fasting plasma glucose (FPG), fasting insulin (FINS), and triglyceride (TG) were measured. IR index was determined using the homeostasis model assessment of insulin resistance (HOMA-IR). Body composition and fat distribution were measured by dual-energy X-ray absorptiometry (DXA). Fat mass (FM), muscle mass (MM), bone mineral content (BMC), and percent fat mass (%FM) at the whole body and five body regions including the arms, legs, trunk, android, and gynoid were obtained from DXA scans.

Results

HOMA-IR decreased from 5.02 at baseline to 1.43 3 months post LRYGB (p < 0.05). There was significant decrease in total and regional body mass and body fat (all p < 0.05). A significant reduction was observed in %FM at every tested body region (all p < 0.05). There was more fat mass loss (31.03 %) in android region than any other tested body region. Preoperative android %FM was significantly correlated with IR (r = 0.49, p < 0.05). Changes in android FM showed significant correlations with changes in IR, FPG, FINS, and TG (r = 0.54, 0.64, 0.54, and 0.67, respectively; all p < 0.05).

Conclusions

Body composition in Chinese T2DM patients is rebalanced after LRYGB. Reduction of central obesity can result in improvement of IR, and android fat distribution may be a good indicator of postoperative benefits for LRYGB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IDF:

International diabetes federation

ADA:

American Diabetes Association

LRYGB:

Laparoscopic Roux-en-Y gastric bypass

T2DM:

Type 2 diabetes mellitus

IR:

Insulin resistance

HOMA-IR:

Homeostasis model assessment of insulin resistance

LNIR:

Natural logarithm of HOMA-IR

BMI:

Body mass index

WC:

Circumference of the waist

WHR:

Waist to hip ratio

OGTT:

Oral glucose tolerance test

FPG:

Fasting plasma glucose

FINS:

Fasting insulin

TG:

Triglyceride

DXA:

Dual-energy X-ray absorptiometry

FM:

Fat mass

MM:

Muscle mass

BMC:

Bone mineral content

BW:

Body weight

%FM:

Percent fat mass

A/G:

Android to gynoid ratio in %FM

%Change:

Percentage of change

SAT:

Subcutaneous adipose tissue

VAT:

Visceral adipose tissue

References

  1. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378(9785):31–40.

    Article  PubMed  CAS  Google Scholar 

  2. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362(12):1090–101.

    Article  PubMed  CAS  Google Scholar 

  3. de Aquino LA, Pereira SE, de Souza SJ, et al. Bariatric surgery: impact on body composition after Roux-en-Y gastric bypass. Obes Surg. 2012;22(2):195–200.

    Article  PubMed  Google Scholar 

  4. Schauer PR, Ikramuddin S, Gourash W, et al. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;232:515–29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. DeMaria EJ, Sugarman HJ, Kellum JM, et al. Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity. Ann Surg. 2002;235:640–5.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Shah M, Simha V, Garg A. Review: long term impact of bariatric surgery on body weight, comorbidities, and nutritional status. J Clin Endocrinol Metabol. 2006;91(11):4223–31.

    Article  CAS  Google Scholar 

  7. Zhu L, Mo Z, Yang X, et al. Effect of laparoscopic Roux-en-Y gastroenterostomy with BMI < 35 kg/m2 in type 2 diabetes mellitus. Obes Surg. 2012;22(10):1562–7.

    Article  PubMed  Google Scholar 

  8. Lear SA, Humphries KH, Kohli S, et al. Visceral adipose tissue accumulation differs according to ethnic background: results of the multicultural community health assessment trial (M-CHAT). Am J Clin Nutr. 2007;86(2):353–9.

    PubMed  CAS  Google Scholar 

  9. Bays H, Ballantyne C. Adiposopathy: why do adiposity and obesity cause metabolic disease? Future Lipidol. 2006;1(4):389–420.

    Article  CAS  Google Scholar 

  10. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.

    Article  PubMed  Google Scholar 

  11. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr. 2004;9:379–84.

    Google Scholar 

  12. Bigaard J, Frederiksen K, Tjønneland A, et al. Waist circumference and body composition in relation to all-cause mortality in middle-aged men and women. Int J Obes (Lond). 2005;29:778–84.

    Article  CAS  Google Scholar 

  13. Carey DG, Jenkins AB, Campbell LV, et al. Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes. 1996;45:633–8.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenthal AD, Jin F, Shu XO, et al. Body fat distribution and risk of diabetes among Chinese women. Int J Obes Relat Metab Disord. 2004;28(4):594–9.

    Article  PubMed  CAS  Google Scholar 

  15. Montague CT, O'Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes. 2000;49:883–9.

    Article  PubMed  CAS  Google Scholar 

  16. Nestel P, Lyu R, Low LP, et al. Metabolic syndrome: recent prevalence in east and Southeast Asian populations. Asia Pac J ain Nutr. 2007;16(2):362–7.

    Google Scholar 

  17. He Y, Zhai F, Ma G, et al. Abdominal obesity and the prevalence of diabetes and intermediate hyperglycaemia in Chinese adults. Public Health Nutr. 2009;12:1078–84.

    Article  PubMed  Google Scholar 

  18. Chen CM. Overview of obesity in Mainland China. Obes Rev. 2008;9:14–21.

    Article  PubMed  Google Scholar 

  19. Wat NM, Lam TH, Janus ED, et al. Central obesity predicts the worsening of glycemia in southern Chinese. Int J Obes Relat Metab Disord. 2001;25(12):1789–93.

    Article  PubMed  CAS  Google Scholar 

  20. Xi B, Liang Y, He T, et al. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993–2009. Obes Rev. 2012;13(3):287–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Hu G, Qiao Q, Tuomilehto J, et al. Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. Diabetologia. 2004;47:1245–56.

    PubMed  CAS  Google Scholar 

  22. Choi K, Kim YB. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med. 2010;25:119–29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Balkau B, Charles MA, Drivsholm T, et al. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab. 2002;28:364–76.

    PubMed  Google Scholar 

  24. Lakdawala M, Bhasker A. Report: Asian consensus meeting on metabolic surgery. Recommendations for the use of bariatric and gastrointestinal metabolic surgery for treatment of obesity and type II diabetes mellitus in the Asian population. Obes Surg. 2010;20(7):929–36.

    Article  PubMed  Google Scholar 

  25. Janssen I, Shields M, Craig CL, et al. Prevalence and secular changes in abdominal obesity in Canadian adolescents and adults, 1981 to 2007–2009. Obes Rev. 2011;12:397–405.

    Article  PubMed  CAS  Google Scholar 

  26. Huettner F, Rammos CK, Dynda DI, et al. Body composition analysis in bariatric surgery: use of air displacement plethysmograph. Am Surg. 2012;78(6):698–701.

    PubMed  Google Scholar 

  27. Glickman SG, Marn CS, Supiano MA, et al. Validity and reliability of dual energy X-ray absorptiometry for the assessment of abdominal adiposity. J Appl Physiol. 2004;97:509–14.

    Article  PubMed  Google Scholar 

  28. Kaul S, Rothney MP, Peters DM, et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring). 2012;20(6):1313–8.

    Article  Google Scholar 

  29. Rothney MP, Xia Y, Wacker WK, et al. Precision of a new tool to measure visceral adipose tissue (VAT) using dual-energy X-ray absorptiometry (DXA). Obesity (Silver Spring). 2013;21(1):E134–6.

    Article  Google Scholar 

  30. Liu Y, Xiong J, He H, et al. Visfatin level after laparoscopic Roux-en-Y gastric bypass surgery in patients with type 2 diabetes. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013;38(3):258–61.

    PubMed  CAS  Google Scholar 

  31. Miller GD, Carr JJ, Fernandez AZ. Regional fat changes following weight reduction from laparoscopic Roux-en-Y gastric bypass surgery. Diabetes Obes Metab. 2011;13(2):189–912.

    Article  PubMed  CAS  Google Scholar 

  32. Jia WP, Lu JX, Xiang KS, et al. Prediction of abdominal visceral obesity from body mass index, waist circumference and waist-hip ratio in Chinese adults: receiver operating characteristic curves analysis. Biomed Environ Sci. 2003;16(3):206–11.

    PubMed  Google Scholar 

  33. Vega GL, Adams-Huet B, Peshock R, et al. Influence of body fat content and distribution on variation in metabolic risk. J Clin Endocrinol Metab. 2006;91(11):4459–66.

    Article  PubMed  CAS  Google Scholar 

  34. Ng AC, Wai DC, Tai ES, et al. Visceral adipose tissue, but not waist circumference is a better measure of metabolic risk in Singaporean Chinese and Indian men. Nutr Diabetes. 2012;2(8):e38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Smith JD, Borel AL, Nazare JA, et al. Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study. J Clin Endocrinol Metab. 2012;97(5):1517–25.

    Article  PubMed  CAS  Google Scholar 

  36. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    Article  PubMed  Google Scholar 

  37. Johansson L, Roos M, Kullberg J, et al. Lipid mobilization following Roux-en-Y gastric bypass examined by magnetic resonance imaging and spectroscopy. Obes Surg. 2008;18(10):1297–304.

    Article  PubMed  CAS  Google Scholar 

  38. Phillips ML, Lewis MC, Chew V, et al. The early effects of weight loss surgery on regional adiposity. Obes Surg. 2005;15(10):1449–55.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaihong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhu, L., Mo, Z. et al. Effect of Laparoscopic Roux-en-Y gastric Bypass on Body Composition and Insulin Resistance in Chinese Patients with Type 2 Diabetes Mellitus. OBES SURG 24, 578–583 (2014). https://doi.org/10.1007/s11695-013-1116-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-1116-7

Keywords

Navigation