Skip to main content
Log in

Lipid Mobilization Following Roux-en-Y Gastric Bypass Examined by Magnetic Resonance Imaging and Spectroscopy

  • Research Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Recent developments of magnetic resonance imaging (MRI) and spectroscopy have made it possible to quantify lipid deposited in different tissues. To what extent an improvement of glucose tolerance shortly after Roux-en-Y gastric bypass surgery (RYGBP) is reflected in lipid levels in liver and skeletal muscle, markers of insulin resistance, has not been clarified.

Methods

Whole-body MRI and MR spectroscopy (MRS) of liver and muscle and measurements of biochemical markers of glucose and lipid metabolism were performed at baseline and 1, 6, and 12 months following surgery in seven morbidly obese women. Volumes of adipose tissue depots and liver and muscle lipids were assessed from the MRI/MRS data.

Results

At 1 month postoperatively, body mass index and visceral and subcutaneous adipose tissues were reduced by 9%, 26%, and 10%, respectively, whereas no reductions in intrahepatocellular or skeletal intramyocellular lipid concentrations were found. Free fatty acid and beta-hydroxybutyrate levels were elevated two- and sixfold, respectively; glucose and insulin levels were lowered, indicating increased insulin sensitivity. Further weight loss up to 1 year was associated with reductions in all investigated lipid depots investigated, with the exception of the intramyocellular compartment.

Conclusion

RYGBP causes rapid lipid mobilization from visceral and subcutaneous adipose depots and enhanced free fatty acid flux to the liver. An exceptional disconnection between liver fat and insulin sensitivity occurs in the early dynamic phase after surgery. However, in the late phase, the energy restriction imposed by the surgical procedure also reduces the liver lipids, but not the intramyocellular lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sjöström L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  2. Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15:474–81.

    Article  PubMed  Google Scholar 

  3. Mari A, Manco M, Guidone C, et al. Restoration of normal glucose tolerance in severely obese patients after bilio-pancreatic diversion: role of insulin sensitivity and beta cell function. Diabetologia. 2006;49:2136–43.

    Article  PubMed  CAS  Google Scholar 

  4. Guidone C, Manco M, Valera-Mora E, et al. Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes. 2006;55:2025–31.

    Article  PubMed  CAS  Google Scholar 

  5. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.

    Article  PubMed  Google Scholar 

  6. Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab. 2005;19:471–82.

    Article  PubMed  CAS  Google Scholar 

  7. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51:7–18.

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen S, Guo Z, Johnson CM, et al. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113:1582–8.

    PubMed  CAS  Google Scholar 

  9. Yki-Järvinen H, Westerbacka J. The fatty liver and insulin resistance. Curr Mol Med. 2005;5:287–95.

    Article  PubMed  Google Scholar 

  10. Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. Annu Rev Nutr. 2002;22:325–46.

    Article  PubMed  CAS  Google Scholar 

  11. Sinha R, Dufour S, Petersen KF, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51:1022–7.

    Article  PubMed  CAS  Google Scholar 

  12. Kelley DE, McKolanis TM, Hegazi RA, et al. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003;285:E906–16.

    PubMed  CAS  Google Scholar 

  13. Sundbom M, Gustavsson S. Randomized clinical trial of hand-assisted laparoscopic versus open Roux-en-Y gastric bypass for the treatment of morbid obesity. Br J Surg. 2004;91:418–23.

    Article  PubMed  CAS  Google Scholar 

  14. Wildenhoff KE. A micro-method for the enzymatic determination of acetoacetate and 3-hydroxybutyrate in blood and urine. Scand J Clin Lab Invest. 1970;25:171–9.

    Article  PubMed  CAS  Google Scholar 

  15. Holdstock C, Edén Engström B, Öhrvall M, et al. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab. 2003;88:3177–83.

    Article  PubMed  CAS  Google Scholar 

  16. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kullberg J, Angelhed JE, Lönn L, et al. Whole-body T1 mapping improves the definition of adipose tissue: consequences for automated image analysis. J Magn Reson Imaging. 2006;24:394–401.

    Article  PubMed  Google Scholar 

  18. Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12:141–52.

    Article  PubMed  CAS  Google Scholar 

  19. Weis J, Johansson L, Courivaud F, et al. Quantification of intramyocellular lipids in obese subjects using spectroscopic imaging with high spatial resolution. Magn Reson Med. 2007;57:22–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lind L, Berne C, Lithell H. Prevalence of insulin resistance in essential hypertension. J Hypertens. 1995;13:1457–62.

    PubMed  CAS  Google Scholar 

  21. Westerbacka J, Lammi K, Häkkinen AM, et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab. 2005;90:2804–9.

    Article  PubMed  CAS  Google Scholar 

  22. Westerbacka J, Cornér A, Tiikkainen M, et al. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia. 2004;47:1360–9.

    Article  PubMed  CAS  Google Scholar 

  23. Yki-Järvinen H. Fat in the liver and insulin resistance. Ann Med. 2005;37:347–56.

    Article  PubMed  CAS  Google Scholar 

  24. Sato F, Tamura Y, Watada H, et al. Effects of diet-induced moderate weight reduction on intrahepatic and intramyocellular triglycerides and glucose metabolism in obese subjects. J Clin Endocrinol Metab. 2007;92:3326–9.

    Article  PubMed  CAS  Google Scholar 

  25. Larson-Meyer DE, Heilbronn LK, Redman LM, et al. Effect of calorie restriction with or without exercise on insulin sensitivity, β-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care. 2006;29:1337–44.

    Article  PubMed  Google Scholar 

  26. Tiikkainen M, Bergholm R, Vehkavaara S, et al. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes. 2003;52:701–7.

    Article  PubMed  CAS  Google Scholar 

  27. Petersen KF, Dufour S, Befroy D, et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54:603–8.

    Article  PubMed  CAS  Google Scholar 

  28. Alami RS, Morton JM, Schuster R, et al. Is there a benefit to preoperative weight loss in gastric bypass patients? A prospective randomized trial. Surg Obes Relat Dis. 2007;3:141–5.

    Article  PubMed  Google Scholar 

  29. Alvarado R, Alami RS, Hsu G, et al. The impact of preoperative weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15:1282–6.

    Article  PubMed  CAS  Google Scholar 

  30. Liu RC, Sabnis AA, Forsyth C, et al. The effects of acute preoperative weight loss on laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15:1396–402.

    Article  PubMed  Google Scholar 

  31. Fris RJ. Preoperative low energy diet diminishes liver size. Obes Surg. 2004;14:1165–70.

    Article  PubMed  Google Scholar 

  32. Lewis MC, Phillips ML, Slavotinek JP, et al. Change in liver size and fat content after treatment with Optifast very low calorie diet. Obes Surg. 2006;16:697–701.

    Article  PubMed  Google Scholar 

  33. Colles SL, Dixon JB, Marks P, et al. Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. Am J Clin Nutr. 2006;84:304–11.

    PubMed  CAS  Google Scholar 

  34. Busetto L, Tregnaghi A, De Marchi F, et al. Liver volume and visceral obesity in women with hepatic steatosis undergoing gastric banding. Obes Res. 2002;10:408–11.

    Article  PubMed  Google Scholar 

  35. Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42:113–6.

    Article  PubMed  CAS  Google Scholar 

  36. Stannard SR, Thompson MW, Fairbairn K, et al. Fasting for 72 h increases intramyocellular lipid content in nondiabetic, physically fit men. Am J Physiol Endocrinol Metab. 2002;283:E1185–91.

    PubMed  CAS  Google Scholar 

  37. Johnson NA, Stannard SR, Rowlands DS, et al. Short-term suppression of plasma free fatty acids fails to improve insulin sensitivity when intramyocellular lipid is elevated. Diabet Med. 2006;23:1061–8.

    Article  PubMed  CAS  Google Scholar 

  38. Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 2002;51:144–51.

    Article  PubMed  CAS  Google Scholar 

  39. Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.

    Article  PubMed  CAS  Google Scholar 

  40. Morinigo R, Moize V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91:1735–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Margareta Ericson for expert technical assistance and Elisabeth Olsson for excellent care and samplings. This study was supported by Uppsala University, the Novo Nordisk Fund, and Ernfors Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, L., Roos, M., Kullberg, J. et al. Lipid Mobilization Following Roux-en-Y Gastric Bypass Examined by Magnetic Resonance Imaging and Spectroscopy. OBES SURG 18, 1297–1304 (2008). https://doi.org/10.1007/s11695-008-9484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-008-9484-0

Keywords

Navigation