Skip to main content
Log in

Rapid identification and quantification of adulteration in Dendrobium officinale using nuclear magnetic resonance spectroscopy combined with least-squares support vector machine

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Dendrobium officinale (D. officinale) is commonly used as a functional food or herbal medicine worldwide, but often adulterated with low-priced materials. In this study, we attempted to develop an integrated method of least-squares support vector machine and nuclear magnetic resonance spectroscopy (LS-SVM-NMR) to identify and quantify the adulteration of D. officinale powder. We found that LS-SVM-NMR can identify the adulterated D. officinale powder with an overall accuracy of 100% and quantify its purity with an R2 of 0.999 and RMSE of 1.410 at model validation phase. In addition, our results from the double-blinded test revealed that LS-SVM-NMR can yield a classification accuracy of 98% for distinguishing the adulterated D. officinale powder, and predict its purity with an R2 of 0.998 and RMSE of 2.660. Moreover, adulteration evaluation reports can be obtained in 10 min. Therefore, LS-SVM-NMR proposed herein could be used as a promising and time-saving tool for the quality evaluation of D. officinale or even other food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Xia, X. Liu, H. Guo, H. Zhang, J. Zhu, F. Ren, J. Func, Foods 4, 294 (2012)

    CAS  Google Scholar 

  2. X. Xing, S.W. Cui, S. Nie, G.O. Phillips, H.D. Goff, Q. Wang, Bioact. Carbohydr. Diet. Fibre 1, 131 (2013)

    Article  CAS  Google Scholar 

  3. L.H. Pan, X.F. Li, M.N. Wang, X.Q. Zha, X.F. Yang, Z.J. Liu et al., Int. J. Biol. Macromol. 64, 420 (2014)

    Article  CAS  Google Scholar 

  4. T.B. He, Y.P. Huang, L. Yang, T.T. Liu, W.Y. Gong, X.J. Wang et al., Int. J. Biol. Macromol. 83, 34 (2016)

    Article  CAS  Google Scholar 

  5. G.Y. Zhang, S.P. Nie, X.J. Huang, J.L. Hu, S.W. Cui, M.Y. Xie, G.O. Phillips, J. Agric. Food Chem. 64, 2485 (2015)

    Article  Google Scholar 

  6. S. Bansal, A. Singh, M. Mangal, A.K. Mangal, S. Kumar, Crit. Rev. Food Sci. Nutr. 57, 1174 (2017)

    Article  CAS  Google Scholar 

  7. T.G. Kang, D.Q. Dou, J.K. Zhang, Planta Med. 74, 10 (2008)

    Google Scholar 

  8. X. Zhao, F. Ma, P. Li, G. Li, L. Zhang, Q. Zhang, W. Zhang, X. Wang, Food Chem. 176, 465 (2015)

    Article  CAS  Google Scholar 

  9. M. Alizadeh, S. Pirsa, N. Faraji, Food Anal. Methods 10, 2092 (2017)

    Article  Google Scholar 

  10. F. Ghasemi, S. Pirsa, M. Alizadeh, F. Mohtarami, Sep. Sci. Technol. 53, 117 (2018)

    Article  CAS  Google Scholar 

  11. L. Zeng, X. Wu, Y. Li, D. Lu, C. Sun, Anal. Methods 7, 543 (2015)

    Article  CAS  Google Scholar 

  12. P. Mishra, C.B. Cordella, D.N. Rutledge, P. Barreiro, J.M. Roger, B. Diezma, J. Food Eng. 168, 7 (2016)

    Article  Google Scholar 

  13. S. Lohumi, S. Lee, H. Lee, B.K. Cho, Trends Food Sci. Technol. 46, 85 (2015)

    Article  CAS  Google Scholar 

  14. R. Hachem, G. Assemat, N. Martins, S. Balayssac, V. Gilard, R. Martino, M. Malet-Martino, J. Pharmaceut. Biomed. Anal. 124, 34 (2016)

    Article  CAS  Google Scholar 

  15. B. Druml, W. Mayer, M. Cichna-Markl, R. Hochegger, Food Chem. 178, 319 (2015)

    Article  CAS  Google Scholar 

  16. G. Ding, G. Xu, W. Zhang, S. Lu, X. Li, S. Gu, X.Y. Ding, Eur. Food Res. Tech. 227, 1283 (2008)

    Article  CAS  Google Scholar 

  17. H. Xu, B. Hou, J. Zhang, M. Tian, Y. Yuan, Z. Niu, X. Ding, Int. J. Food Sci. Tech. 47, 1695 (2012)

    Article  CAS  Google Scholar 

  18. X. Dong, C. Jiang, Y. Yuan, D. Peng, Y. Luo, Y. Zhao, L. Huang, J. Sci. Food Agric. 98, 549 (2018)

    Article  CAS  Google Scholar 

  19. L. Yang, W.R. Wu, H. Zhou, H.L. Lai, F. Fu, Chin. J. Nat. Med. 17, 337 (2019)

    PubMed  Google Scholar 

  20. C. Chu, H. Yin, L. Xia, D. Cheng, J. Yan, L. Zhu, Molecules 19, 3718 (2014)

    Article  Google Scholar 

  21. K.Z. Yu, H. Yan, H.C. Tai, N.P. Zhang, X.L. Cheng, Z.X. Guo et al., Microsc. Res. Tech. 80, 745 (2017)

    Article  Google Scholar 

  22. Y. Yuan, X. Liu, J. Wang, J. Zhang, Microsc. Res. Tech. 82, 483 (2019)

    Article  Google Scholar 

  23. Y. Wei, W. Fan, X. Zhao, W. Wu, H. Lu, Anal. Lett. 48, 817 (2015)

    Article  CAS  Google Scholar 

  24. Y. Wang, Z.T. Zuo, T. Shen, H.Y. Huang, Y.Z. Wang, Anal. Lett. 51, 2792 (2018)

    Article  Google Scholar 

  25. Z. Ye, J.R. Dai, C.G. Zhang, Y. Lu, L.L. Wu, A.G. Gong et al., Evid. Based Complement. Alternat. Med. 2017, 8647212 (2017)

    PubMed  PubMed Central  Google Scholar 

  26. U. Holzgrabe, NMR Spectroscopy in Pharmaceutical Analysis (Elsevier, Amsterdam, 2017)

    Google Scholar 

  27. E. Destandau, T. Michel, C. Elfakir, R. Soc. Chem. 21, 113 (2013)

    CAS  Google Scholar 

  28. F. Savorani, G. Tomasi, S.B. Engelsen, J. Magn. Reson. 202, 190 (2009)

    Article  Google Scholar 

  29. J. Xia, I.V. Sinelnikov, B. Han, D.S. Wishart, Nucl. Acids Res. 43, W251 (2015)

    Article  CAS  Google Scholar 

  30. H. Zheng, H.F. Lu, Comput. Electron. Agric. 83, 47 (2012)

    Article  Google Scholar 

  31. X. Ding, L. Xu, Z. Wang, K. Zhou, H. Xu, Y. Wang, Planta Med 68, 191 (2002)

    Article  CAS  Google Scholar 

  32. X. Ding, Z. Wang, K. Zhou, L. Xu, H. Xu, Y. Wang, Planta Med 69, 587 (2003)

    Article  CAS  Google Scholar 

  33. T. Li, J. Wang, Z. Lu, J. Biochem. Biophys. Meth. 62, 111 (2005)

    Article  CAS  Google Scholar 

  34. S.C.W. Sze, K.Y.B. Zhang, P.C. Shaw, P.P.H. But, T.B. Ng, Y. Tong, Biotechnol. Appl. Biochem. 49, 149 (2008)

    Article  CAS  Google Scholar 

  35. S. Zhu, Z. Niu, Q. Xue, H. Wang, X. Xie, X. Ding, Acta Pharm. Sin. B 8, 969 (2018)

    Article  Google Scholar 

  36. Y. Zhao, L. Zha, B. Han, H. Peng, Microsci. Res. Technol. 81, 1191 (2018)

    Article  Google Scholar 

  37. J.A.K. Suykens, J. Vandewalle, Neural Proc. Lett. 9, 293 (1999)

    Article  Google Scholar 

  38. J.A.K. Suykens, J. Vandewalle, Int. J. Circ. Theor. Appl. 27, 605 (2015)

    Article  Google Scholar 

  39. G. Zyskind, J. Am. Stat. Assoc. 58, 1125 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Qianjiang Talent Project of Zhejiang Province (No. QJD1802023) and National Natural Science Foundation of China (Nos.: 21575105, 81503335).

Author information

Authors and Affiliations

Authors

Contributions

HZ and HCG contributed to experimental design. LLP and LLJ contributed to sample collection. LLP and LLJ contributed to sample preparation and metabolomics data acquisition. LLJ and HZ contributed to data analysis, model development and writing. All authors have read, revised and approved the final manuscript.

Corresponding author

Correspondence to Hong Zheng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Pan, L., Gao, H. et al. Rapid identification and quantification of adulteration in Dendrobium officinale using nuclear magnetic resonance spectroscopy combined with least-squares support vector machine. Food Measure 14, 1427–1432 (2020). https://doi.org/10.1007/s11694-020-00392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00392-6

Keywords

Navigation