Skip to main content
Log in

Rapid and accurate detection of Dendrobium officinale adulterated with lower-price species using NMR characteristic markers integrated with artificial neural network

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Dendrobium officinale (D. officinale) as a well-known herbal and functional food material is often adulterated with lower-price Dendrobium species. In this study, we aimed to develop an integrated method of nuclear magnetic resonance spectroscopy and artificial neural network (NMR-ANN) to identify and quantify the adulteration of D. officinale powder with other cheaper species. Microwave-assisted water extraction was selected as a time-saving and green method for sample preparation. The results indicate that the NMR-ANN method effectively quantified the adulteration rate of D. officinale powder with the root mean squared error (RMSE) of 4.92, mean absolute error (MAE) of 3.56 and coefficient of determination (R2) of 0.98 in the model test phase and with the RMSE of 7.65, MAE of 6.30 and R2 of 0.98 in the double-blinded test phase. The whole evaluation process can be done in 6 min and 5 s. Therefore, the NMR-ANN method can be used as a rapid, green and accurate tool for evaluating the quality of D. officinale or even other food materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are contained within the article. The data and materials used in this study are available on request from the corresponding author.

References

  1. X.H. Jin, S.C. Singchi, Chen, Y.B. Luo, Taxonomic revision of Dendrobium moniliforme complex (Orchidaceae). Sci. Hort. 120, 143–145 (2009)

    Article  Google Scholar 

  2. W.H. Chen, J.J. Wu, X.F. Li, J.M. Lu, W. Wu, Y.Q. Sun et al., Isolation, structural properties, bioactivities of polysaccharides from Dendrobium Officinale Kimura et. Migo: a review. Int. J. Biol. Macromol. 184, 1000–1013 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. L. Sun, X.M. Chen, C.M. Wu, S.X. Guo, Advances and prospects of pharmacological activities of Dendrobium Officinale Kimura et migo polysaccharides. Acta Pharm. Sinica. 12, 2322–2329 (2020)

    Google Scholar 

  4. Q. Zeng, C.H. Ko, W.S. Siu, L.F. Li, X.Q. Han, L. Yang et al., Polysaccharides of Dendrobium Officinale Kimura & Migo protect gastric mucosal cell against oxidative damage-induced apoptosis in vitro and in vivo. J. Ethnopharmacol. 208, 214–224 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. W. Chen, J. Lu, J. Zhang, J. Wu, L. Yu, L. Qin, B. Zhu, Traditional uses, phytochemistry, pharmacology, and quality control of Dendrobium Officinale Kimura et. Migo Front. Pharmacol. 12, 726528 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. H. Xu, B. Hou, J. Zhang, M. Tian, Y. Yuan, Z. Niu, X. Ding, Detecting adulteration of Dendrobium officinale by real-time PCR coupled with ARMS. Int. J. Food Sci. &Technology. 47(8), 1695–1700 (2012)

    Article  CAS  Google Scholar 

  7. K. Zheng, Y. Cai, W. Chen, Y. Gao, J. Jin, H. Wang et al., Development, identification, and application of a germplasm specific SCAR marker for Dendrobium Officinale Kimura et Migo. Front. Plant Sci. 12, 669458 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  8. H. Dang, X. Zhang, C. Ma, W. Zhao, H. Guo, G. Huang, L. Xie, A transcriptome-based analysis reveals functional differences among Dendrobium Officinale Kimura &Migo species from different growing regions and with different quality levels. Med. Novel Technol. Devices. 16, 100163 (2022)

    Article  Google Scholar 

  9. Y. Wang, Z.T. Zuo, T. Shen, H.Y. Huang, Y.Z. Wang, Authentication of Dendrobium species using near-infrared and ultraviolet–visible spectroscopy with chemometrics and data fusion. Anal. Lett. 51, 2792–2821 (2018)

    Article  Google Scholar 

  10. C. Chu, H. Yin, L. Xia, D. Cheng, J. Yan, L. Zhu, Discrimination of Dendrobium officinale and its common adulterants by combination of normal light and fluorescence microscopy. Molecules. 19, 3718–3730 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Z. Ye, J.R. Dai, C.G. Zhang, Y. Lu, L.L. Wu, A.G. Gong et al., Chemical differentiation of Dendrobium officinaleand Dendrobium devonianumby using HPLC fingerprints, HPLC-ESI-MS, and HPTLC analyses. Evidence-Based Complement. Altern. Med., 2017, 8647212

  12. Y. Wei, W. Fan, X. Zhao, W. Wu, H. Lu, Rapid authentication of Dendrobium officinaleby near-infrared reflectance spectroscopy and chemometrics. Anal. Lett. 48, 817–829 (2015)

    Article  CAS  Google Scholar 

  13. T. Lefebvre, E. Destandau, E. Lesellier, Selective extraction of bioactive compounds from plants using recent extraction techniques: a review. J. Chromatogr. A 1635, 461770 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. A.K. Jha, N. Sit, Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends Food Sci. Technol. 119, 579–591 (2022)

    Article  CAS  Google Scholar 

  15. S.B. Bagade, M. Patil, Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Crit. Rev. Anal. Chem. 51, 138–149 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. E.J. Rifna, R. Pandiselvam, A. Kothakota, K.S. Rao, M. Dwivedi, M. Kumar et al., Advanced process analytical tools for identification of adulterants in edible oils–A review. Food Chem. 369, 130898 (2022)

    Article  CAS  PubMed  Google Scholar 

  17. A.P. Sobolev, F. Thomas, J. Donarski, C. Ingallina, S. Circi, F.C. Marincola et al., Use of NMR applications to tackle future food fraud issues. Trends Food Sci. Technol. 91, 347–353 (2019)

    Article  CAS  Google Scholar 

  18. L. Jiang, L. Pan, H. Gao, H. Zheng, Rapid identification and quantification of adulteration in Dendrobium officinale using nuclear magnetic resonance spectroscopy combined with least-squares support vector machine. J. Food Meas. Charact. 14, 1427–1432 (2020)

    Article  Google Scholar 

  19. B. Dębska, B. Guzowska-Świder, Application of artificial neural network in food classification. Anal. Chim. Acta. 705, 283–291 (2011)

    Article  PubMed  Google Scholar 

  20. K. Goyal, P. Kumar, K. Verma, Food adulteration detection using artificial intelligence: a systematic review. Arch. Comput. Methods Eng. 29, 397–426 (2022)

    Article  Google Scholar 

  21. E. Funes, Y. Allouche, G. Beltrán, A. Jiménez, A review: artificial neural networks as tool for control food industry process. J. Sens. Technol. 5, 54322 (2015)

    Article  Google Scholar 

  22. F. Savorani, G. Tomasi, S.B. &Engelsen, .Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 202, 190–202 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. J.L. Aleixandre-Tudó, L. Castelló-Cogollos, J.L. Aleixandre, R. Aleixandre-Benavent, Chemometrics in food science and technology: a bibliometric study. Chemometr. Intell. Lab. Syst. 222, 104514 (2022)

    Article  Google Scholar 

  24. M. Greenacre, P.J. Groenen, T. Hastie, A.I. d’Enza, A. Markos, E. Tuzhilina, Principal component analysis. Nat. Reviews Methods Primers. 2, 100 (2022)

    Article  CAS  Google Scholar 

  25. C.L. Lin, C.L. Fan, B.K. Chen, Hybrid analytic hierarchy process–artificial neural network model for predicting the major risks and quality of Taiwanese construction projects. Appl. Sci. 12, 7790 (2022)

    Article  CAS  Google Scholar 

  26. M.S. Firouz, M. Omid, M. Babaei, M. &Rashvand, Dielectric spectroscopy coupled with artificial neural network for classification and quantification of sesame oil adulteration. Inform. Process. Agric. 9, 233–242 (2022)

    Google Scholar 

  27. M.T. Hagan, M.B. &Menhaj, Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks. 5, 989–993 (1994)

    Article  CAS  PubMed  Google Scholar 

  28. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  29. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  Google Scholar 

  30. L.Z. Meng, G.P. Lv, D.J. Hu, K.L. Cheong, J. Xie, J. Zhao, S.P. Li, Effects of polysaccharides from different species of Dendrobium (Shihu) on macrophage function. Molecules. 18, 5779–5791 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  31. F.G.C. Ekezie, D.W. Sun, J.H. Cheng, Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: a review of latest developments. Trends Food Sci. Technol. 67, 160–172 (2017)

    Article  CAS  Google Scholar 

  32. A. Krogh, What are artificial neural networks? Nat. Biotechnol. 26, 195–197 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural network applications: a survey. Heliyon, 2018, 4, e00938

  34. S.H. Ganie, P. Upadhyay, S. Das, M.P. Sharma, Authentication of medicinal plants by DNA markers. Plant. Gene. 4, 83–99 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Ding, X. Li, X. Ding, L. Qian, Genetic diversity across natural populations of Dendrobium officinale, the endangered medicinal herb endemic to China, revealed by ISSR and RAPD markers. Russian J. Genet. 45, 327–334 (2009)

    Article  CAS  Google Scholar 

  36. D. Xue, S. Feng, H. Zhao, H. Jiang, B. Shen, N. Shi et al., The linkage maps of Dendrobium species based on RAPD and SRAP markers. J. Genet. Genomics. 37, 197–204 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. X. Ding, L. Xu, Z. Wang, K. Zhou, H. Xu, Y. Wang, Authentication of stems of Dendrobium officinale by rDNA ITS region sequences. Planta Med. 68, 191–192 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. L.E. Wahba, N. Hazlina, A. Fadelah, W. Ratnam, Genetic relatedness among Dendrobium (Orchidaceae) species and hybrids using morphological and AFLP markers. Hortscience. 49, 524–530 (2014)

    Article  Google Scholar 

  39. J.J. Lu, J.Y. Kang, S.G. Feng, H.Y. Zhao, J.J. Liu, H.Z. Wang, Transferability of SSR markers derived from Dendrobium Nobile expressed sequence tags (ESTs) and their utilization in Dendrobium phylogeny analysis. Sci. Hort. 158, 8–15 (2013)

    Article  CAS  Google Scholar 

  40. S.C.W. Sze, K.Y.B. Zhang, P.C. Shaw, P.P.H. But, T.B. Ng, Y. Tong, A DNA microarray for differentiation of the Chinese medicinal herb Dendrobium officinale (FengdouShihu) by its 5 S ribosomal DNA intergenic spacer region. Biotechnol. Appl. Chem. 49, 149–154 (2008)

    CAS  Google Scholar 

  41. H.Z. Wang, S.G. Feng, J.J. Lu, N.N. Shi, J.J. Liu, Phylogenetic study and molecular identification of 31 Dendrobium species using inter-simple sequence repeat (ISSR) markers. Sci. Hort. 122, 440–447 (2009)

    Article  CAS  Google Scholar 

  42. G. Ding, D. Zhang, X. Ding, Q. Zhou, W. Zhang, X. Li, Genetic variation and conservation of the endangered Chinese endemic herb Dendrobium Officinale based on SRAP analysis. Plant Syst. Evol. 276, 149–156 (2008)

    Article  Google Scholar 

Download references

Funding

This study was supported by the 2022 Student Partnering with Faculty/Staff Research Program of Wenzhou-Kean University, China (No.: WKUSPS202238).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HZ and LLJ; Data curation: HZ; Formal analysis: HZ and KYG; Funding acquisition: LLJ; Investigation: KYG, NY, MJW and YXL; Methodology: KYG, NY, MJW and YXL; Project administration: LLJ; Resources: HZ; Supervision: HZ and LLJ; Visualization: KYG, XLY, HZ and LLJ; Writing - original draft: HZ and LLJ; Writing - review & editing: XLY, KYG, NY, MJW, YXL, HZ and LLJ.

Corresponding authors

Correspondence to Hong Zheng or Lingling Jiang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, K., Yin, X., Ying, N. et al. Rapid and accurate detection of Dendrobium officinale adulterated with lower-price species using NMR characteristic markers integrated with artificial neural network. Food Measure (2024). https://doi.org/10.1007/s11694-024-02538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02538-2

Keywords

Navigation