Skip to main content
Log in

Impact of insoluble starch remnants on the behavior of corn starch/glycerol/LiCl solid electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The effect of starch-insoluble remnants (i.e., ghosts) on the behavior of the solid biopolymer electrolyte remains to be studied. This work focused on this issue by considering a case-study system formed by corn starch, glycerol, and lithium chloride. The ghost content was controlled by subjecting the gelatinized dispersion to ultrasonic cavitation at various times. Ghost content reduction led to a slight decrease in conductivity. When the ghost content was reduced to almost nil, the capacitance estimated from cyclic voltammetry tests showed a decrease of about 37%. In contrast, the stability of the electrolyte, estimated by repeated potential cycles, was positively affected. Formation of free radicals and starch chain retrogradation are postulated as the mechanisms involved in the conductivity and capacitance variations in corn starch, glycerol, and lithium chloride solid biopolymer electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  2. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10(10):4025–4031

    Article  CAS  Google Scholar 

  3. Wu JH, Lan Z, Lin JM, Huang ML, Hao SC, Sato T, Yin S (2007) A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Mater 19:4006–4011

    Article  CAS  Google Scholar 

  4. Khiar AA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  5. Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373:23–27

    Article  CAS  Google Scholar 

  6. Yamazaki A, Takegawa R, Kaneko Y, Kadokawa JI, Yamagata M, Ishikawa M (2009) An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  7. Park SJ, Yoo K, Kim JY, Kim JY, Lee DK, Kim B, Ko MJ (2013) Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells. ACS Nano 7:4050–4056

    Article  CAS  Google Scholar 

  8. Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch-Stärke 40:44–50

    Article  CAS  Google Scholar 

  9. Marcondes RF, D'Agostini PS, Ferreira J, Girotto EM, Pawlicka A, Dragunski DC (2010) Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics 181:586–591

    Article  CAS  Google Scholar 

  10. Sudhakar YN, Selvakumar M (2012) Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim Acta 78:398–405

    Article  CAS  Google Scholar 

  11. Sudhakar YN, Selvakumar M (2013) Ionic conductivity studies and dielectric studies of poly(styrene sulphonic acid)/starch blend polymer electrolyte containing LiClO4. J Appl Electrochem 43:21–29

    Article  CAS  Google Scholar 

  12. Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: potato starch + ammonium iodide. Carbohydr Polym 88:54–60

    Article  CAS  Google Scholar 

  13. Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 18:3796–5803

    Article  CAS  Google Scholar 

  14. Biliaderis CG, Maurice TJ, Vose JR (1980) Starch gelatinization phenomena studied by differential scanning calorimetry. J Food Sci 45:1669–1674

    Article  Google Scholar 

  15. Ratnayake WS, Jackson DS (2007) A new insight into the gelatinization process of native starches. Carbohydr Polym 67:511–529

    Article  CAS  Google Scholar 

  16. Fannon JE, BeMiller JN (1992) Structure of corn starch paste and granule remnants revealed by low-temperature scanning electron microscopy after cryopreparation. Cereal Chem 69:456–460

    Google Scholar 

  17. Debet MR, Gidley MJ (2007) Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule ‘ghost’ integrity. J Agric Food Chem 55:4752–4760

    Article  CAS  Google Scholar 

  18. Zhang B, Dhital S, Flanagan BM, Gidley M (2014) Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties. J Agr Food Chem 62:760–771

    Article  CAS  Google Scholar 

  19. Thiré RM, Simão RA, Andrade CT (2003) High resolution imaging of the microstructure of maize starch films. Carbohydr Polym 54:149–158

    Article  Google Scholar 

  20. Garcia-Hernandez A, Vernon-Carter EJ, Alvarez-Ramirez J (2017) Impact of ghosts on the mechanical, optical, and barrier properties of corn starch films. Starch-Stärke. doi:10.1002/star.201600308

    Google Scholar 

  21. Ma X, Yu J, He K, Wang N (2007) Thermoplastic starch plasticized by glycerol as solid polymer electrolytes. Macromol Mat Eng 292:503–510

    Article  CAS  Google Scholar 

  22. Ning W, Xingxiang Z, Haihui L, Jianping W (2009) N,N-dimethylacetamide/lithium chloride plasticized starch as solid biopolymer electrolytes. Carbohydr Polym 77:607–611

    Article  Google Scholar 

  23. Wang N, Zhang X, Liu H, Han N (2010) Ionically conducting polymers based on ionic liquid-plasticized starch containing lithium chloride. Polym Polym Comp 18:53–58

    CAS  Google Scholar 

  24. Wexler A, Hazegawa S (1954) Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 degree to 50 degrees C. J Res Natl Bur Stand 53:19–26

    Article  CAS  Google Scholar 

  25. Atkin NJ, Abeysekera RM, Robards AW (1998) The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydr Polym 36:193–204

    Article  CAS  Google Scholar 

  26. Jambrak AR, Herceg Z, Šubarić D, Babić J, Brnčić M, Brnčić SR, Gelo J (2010) Ultrasound effect on physical properties of corn starch. Carbohydr Polym 79:91–100

    Article  CAS  Google Scholar 

  27. Czechowska-Biskup R, Rokita B, Lotfy S, Ulanski P, Rosiak JM (2005) Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr Polym 60:175–184

    Article  CAS  Google Scholar 

  28. Zhu F (2015) Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol 43:1–17

    Article  CAS  Google Scholar 

  29. Amini AM, Razavi SMA, Mortazavi SA (2015) Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydr Polym 122:282–292

    Article  Google Scholar 

  30. Li G, Li Z, Zhang P, Zhang H, Wu Y (2008) Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl Chem 80:2553–25563

    CAS  Google Scholar 

  31. Wang S, Li C, Copeland L, Niu Q, Wang S (2015) Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14:568–585

    Article  CAS  Google Scholar 

  32. van Soest JJ, Tournois H, de Wit D, Vliegenthart JF (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279:201–214

    Article  Google Scholar 

  33. Sevenou O, Hill SE, Farhat IA, Mitchell JR (2002) Organization of the external region of the starch granule as determined by infrared microscopy. Int J Biol Macromol 31:79–85

    Article  CAS  Google Scholar 

  34. Jaipal Reddy M, Sreekanth T, Subba Rao UV (1999) Study of the plasticizer effect on a (PEO + NaYF4) polymer electrolyte and its use in an electrochemical cell. Solid State Ionics 126:55–63

    Article  Google Scholar 

  35. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165

    Article  CAS  Google Scholar 

  36. Bourtoom T (2008) Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. J Sci Technol 30(Suppl. 1):149–165

    Google Scholar 

  37. Rice MJ, Roth WL (1972) Ionic transport in super ionic conductors: a theoretical model. J Solid State Chem 4(2):294–310

    Article  CAS  Google Scholar 

  38. Beck M, Jekle M, Becker T (2011) Starch re-crystallization kinetics as a function of various cations. Starch-Stärke 63:792–800

    Article  CAS  Google Scholar 

  39. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358:1104–1112

    Article  CAS  Google Scholar 

  40. Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356:2277–2281

    Article  CAS  Google Scholar 

  41. Selvakumar M, Bhat DK (2008) LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. J Appl Polym Sci 110:594–602

    Article  CAS  Google Scholar 

  42. Stephan AM, Thirunakaran RN, Renganathan G, Sundaram V, Pitchumani S, Muniyandi N, Ramamoorthy P (1999) A study on polymer blend electrolyte based on PVC/PMMA with lithium salt. J Power Sources 81:752–758

    Article  Google Scholar 

  43. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York

    Book  Google Scholar 

  44. Sudhakar YN, Selvakumar M, Bhat DK (2015) Effect of acid dopants in biodegradable gel polymer electrolyte and the performance in an electrochemical double layer capacitor. Phys Scr 90:095702

    Article  Google Scholar 

  45. Forssell P, Hamunen A, Autio K, Suortti P, Poutanen K (1995) Hypochlorite oxidation of barley and potato starch. Starch-Stärke 47:371–377

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for partially financing this work through project 236500.

Author contributions

C. Roldan-Cruz (Ph.D. student) designed and performed the EIS experiments. A. Garcia-Hernandez (Ph.D. student) obtained the optical and SEM micrographs and carried out the conductivity, opacity, and contact angle determinations. E. J. Vernon-Carter proposed the use of contact angle and EIS for monitoring film stability. J. Alvarez-Ramirez organized results and discussion. All authors contributed to the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alvarez-Ramirez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldan-Cruz, C., Garcia-Hernandez, A., Vernon-Carter, E.J. et al. Impact of insoluble starch remnants on the behavior of corn starch/glycerol/LiCl solid electrolyte. Ionics 23, 1721–1732 (2017). https://doi.org/10.1007/s11581-017-2014-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2014-0

Keywords

Navigation