Skip to main content
Log in

Ionic conductivity studies and dielectric studies of Poly(styrene sulphonic acid)/starch blend polymer electrolyte containing LiClO4

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Proton and lithium-ion conducting biodegradable solid polymer electrolytes were prepared using blends of poly(styrene sulphonic acid) (PSSA) and starch for supercapacitor applications. The ionic conductivities have been calculated using the bulk impedance obtained through impedance spectroscopy with varying blend ratio and plasticizer. Glycerol as plasticizer improved the film formation property, while lithium perchlorate (LiClO4) as dopant enhanced the conductivity. The maximum conductivity has been found to be 5.7 × 10−3 Scm−1 at room temperature for 80/20 (PSSA/starch) blend ratio. The dielectric studies showed relaxation peaks indicating proton and Li+ conduction in the plasticized polymer blend matrix and dielectric modulus also exhibited a long tail feature indicating good capacitance. Differential scanning calorimetry thermograms showed two peaks and decreased with varying blend ratio and plasticizer. A carbon–carbon supercapacitor was fabricated using suitable electrolyte, and its electrochemical characteristics using cyclic voltammetry, AC impedance and galvanostatic charge–discharge were studied. Supercapacitor showed a fairly good specific capacitance of 115 Fg−1 at 10 mV s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Conway B (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum, New York

    Google Scholar 

  2. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  3. Rudge A, Raistrick I, Gottesfeld S (1994) Electrochim Acta 39:273

    Article  CAS  Google Scholar 

  4. Hashmi SA (2004) Natl Acad Sci Lett 27:27

    Google Scholar 

  5. Stephan AM (2006) Eur Polym J 42:21

    Article  Google Scholar 

  6. Tambelli CE, Donoso JP, Regiani AM, Pawlicka A, Gandini A, LeNest JF (2001) Electrochim Acta 46:1665

    Article  CAS  Google Scholar 

  7. Victoria KL (2005) Appl Microbiol Biotechnol 67:735

    Article  Google Scholar 

  8. Peng SW, Wang XY, Dong LS (2005) Polym Compos 26:37

    Article  CAS  Google Scholar 

  9. Ge XC, Li XH, Zhu Q (2004) Polym Eng Sci 44:2134

    Article  CAS  Google Scholar 

  10. Kim SH, Kim YH (2000) Polym Eng Sci 40:2539

    Article  Google Scholar 

  11. Khiar ASA, Arof AK (2010) Ionics 16:123

    Article  CAS  Google Scholar 

  12. Arrieta AA, Gañán PF, Márquez SE, Zuluaga R (2011) J Braz Chem Soc 22:1170

    Article  CAS  Google Scholar 

  13. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  14. Rikukawa M, Sanui K (2000) Prog Polym Sci 25:1463

    Article  CAS  Google Scholar 

  15. Sun J, Jordan LR, Forsyth M, MacFarlane DR (2001) Electrochim Acta 46:1703

    Article  CAS  Google Scholar 

  16. Acar O, Sen U, Bozkurt A, Ata A (2009) Int J Hydrog Energy 34:2724

    Article  CAS  Google Scholar 

  17. Wee G, Larsson O, Madhavi S, Magnus B, Xavier C, Subodh M (2010) Adv Funct Mater 20:4344

    Article  CAS  Google Scholar 

  18. Sousa AMM, Sereno AM, Hilliou L, Goncalves MP (2010) Mater Sci Forum 636:739

    Article  Google Scholar 

  19. Yahya MZA, Arof AK (2004) Carbohydr Polym 55:95

    Article  CAS  Google Scholar 

  20. Vieira F, Avellaneda CO, Pawlicka A (2007) Electrochim Acta 53:1404

    Article  CAS  Google Scholar 

  21. Bhat DK, Selvakumar M (2006) J Polym Environ 14:385

    Article  CAS  Google Scholar 

  22. Selvakumar M, Bhat DK (2008) J Appl Polym Sci 110:594

    Article  CAS  Google Scholar 

  23. Selvakumar M, Bhat DK (2009) J Appl Polym Sci 114:2445

    Article  Google Scholar 

  24. Sudhakar YN, Selvakumar M, Bhat DK (2012) Ionics. doi:10.1007/s11581-012-0745-5

    Google Scholar 

  25. Wine T, Arof AK (2004) Ionics 10:193

    Article  Google Scholar 

  26. Okada M, Yamada M, Yokoe M, Aoi K (2001) J Appl Polym Sci 81:2721

    Article  CAS  Google Scholar 

  27. Chandra R, Rustgi R (1997) Polym Degrad Stab 56:185

    Article  CAS  Google Scholar 

  28. Sudhakar YN, Selvakumar M (2012) Electrochim Acta 78:398

    Article  CAS  Google Scholar 

  29. Aarti SB, Bhat DK, Santosh MS (2011) J Electroanal Chem 657:135

    Article  Google Scholar 

  30. Chowdhury NA, Shukla AK, Sampath S, Pitchumani S (2006) J Electrochem Soc 153:A614

    Article  Google Scholar 

  31. Uma T, Mahalingam T, Stimming U (2005) Mater Chem Phys 90:245

    Article  CAS  Google Scholar 

  32. Andrade JR, Raphael E, Pawlicka A (2009) Electrochim Acta 54:6479

    Article  CAS  Google Scholar 

  33. Meenakshi P, Noorjahan SE, Rajini R, Venkateswarlu U, Rose C, Sastry TP (2002) Bull Mater Sci 25:25

    Article  CAS  Google Scholar 

  34. Mishra R, Rao KJ (1998) Solid State Ion 106:113

    Article  CAS  Google Scholar 

  35. Patro LN, Hariharan K (2009) Mater Sci Eng B 162:173

    Article  CAS  Google Scholar 

  36. Bozkurt A (2002) J Phys Chem Solids 63:685

    Article  CAS  Google Scholar 

  37. Watanabe M (1992) Solid state ionics. In: Chowdari BVR, Chandra S, Singh S, Srivastava PC (eds) Materials and applications. World Scientific, Singapore, p 373

    Google Scholar 

  38. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  39. Khiar ASA, Puteh R, Arof AK (2006) Phys B 373:23

    Article  CAS  Google Scholar 

  40. Selvakumar M, Bhat DK (2009) Phys B 404:1143

    Article  CAS  Google Scholar 

  41. Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Electrochim Acta 42:15

    Article  Google Scholar 

  42. Osman Z, Ibrahim ZA, Arof AK (2001) Carbohydr Polym 44:167

    Article  CAS  Google Scholar 

  43. http://www.polymersource.com/dataSheet/P4998-USSO3H.pdf. Accessed 26 July 2012

  44. Sakurai K, Maegawa T, Takahashi T (2000) Polymer 41:7051

    Article  CAS  Google Scholar 

  45. Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A, Hou H (2009) J Mater Chem 19:2810

    Article  CAS  Google Scholar 

  46. Taberna PL, Simon P, Fauvarque JF (2003) J Electrochem Soc 150:A292

    Article  CAS  Google Scholar 

  47. Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M, Lan Z (2012) J Power Sources 198:402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge with thanks the financial support received from the Defence and Research Development Organisation, Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Selvakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudhakar, Y.N., Selvakumar, M. Ionic conductivity studies and dielectric studies of Poly(styrene sulphonic acid)/starch blend polymer electrolyte containing LiClO4 . J Appl Electrochem 43, 21–29 (2013). https://doi.org/10.1007/s10800-012-0493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0493-2

Keywords

Navigation